[include(틀:양자역학)] [목차] == 개요 == {{{+1 angular momentum operator}}} [[양자역학]]에서 [[각운동량]]은 입자의 회전에 의한 궤도 각운동량과 입자에 내재된 각운동량인 [[스핀(물리학)|스핀 각운동량]], 이 둘의 합인 총 각운동량으로 나눌 수 있다. 이 문서에서는 궤도 각운동량을 주로 설명한다. == 상세 == [[양자역학]]에서 (궤도) 각운동량은 다른 물리량과 같이 [[연산자]]로 정의된다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \mathbf{\hat{L}}=\mathbf{\hat{r}} \times \mathbf{\hat{p}} )][* 여기서 hat([math(\hat{\,\:})])은 단위 벡터를 표시하는 것이 아닌 연산자를 나타내는 표기이다.] }}} 이때, [math(\mathbf{\hat{r}})], [math(\mathbf{\hat{p}})]는 각각 위치 연산자, [[운동량 연산자]]이다. [math(\mathbf{\hat{p}}=-i \hbar \boldsymbol{\nabla })]임을 이용하면, 아래와 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \mathbf{\hat{L}}=-i \hbar {\mathbf{r}} \times \boldsymbol{\nabla } \quad \Rightarrow \quad \begin{cases} \displaystyle \hat{L}_x = -i\hbar \left(y {\partial\over \partial z} - z {\partial\over \partial y} \right) \\ \displaystyle \hat{L}_y = -i\hbar \left(z {\partial\over \partial x} - x {\partial\over \partial z}\right) \\ \displaystyle \hat{L}_z = -i\hbar \left(x {\partial\over \partial y} - y {\partial\over \partial x} \right) \end{cases} )] }}} 주어진 궤도 각운동량은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \hat{L}_{i}=\sum_{j,\,k}\varepsilon_{ijk}\hat{x}_{j}\hat{p}_{k} )] }}} 으로 쓸 수 있고 ([math(\varepsilon_{ijk})]는 [[레비치비타 기호]]이다.) {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{i}^{\dagger}&=\sum_{j,\,k} \varepsilon_{ijk}(\hat{x}_{j}\hat{p}_{k})^{\dagger} \\&= \sum_{j,\,k} \varepsilon_{ijk}\hat{p}_{k}^{\dagger}\hat{x}_{j}^{\dagger} \end{aligned} )] }}} 위치 연산자와 운동량 연산자는 [[수반 연산자#s-3|자기 수반 연산자(hermitian operator)]]이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{i}^{\dagger}&= \sum_{j,\,k} \varepsilon_{ijk}\hat{p}_{k}\hat{x}_{j} \end{aligned} )] }}} 한편, [math(k=j)]인 경우는 연산에 기여하지 않으므로[* [[레비치비타 기호]]의 특성 때문이다.] 무시하고, 그렇게 되면 위치 연산자와 운동량 연산자는 다른 축에 대한 것만 남으므로 교환 가능하다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{i}^{\dagger}&= \sum_{j,\,k} \varepsilon_{ijk}\hat{x}_{j}\hat{p}_{k} \\&=\hat{L}_{i} \end{aligned} )] }}} 따라서 각운동량 연산자는 자기 수반성을 띰을 알 수 있다. 이는 다음을 의미한다. * 각운동량은 양자역학적으로 측정 가능하다. (고윳값이 실수이다.) * 각운동량 연산자에 대응하는 고유함수는 정규직교함수이다. 좀 더 일반적으로 각운동량 연산자[* 궤도 각운동량 [math(\mathbf{L})], [[스핀(물리학)|스핀 각운동량]] [math(\mathbf{S})], 총 각운동량 [math(\mathbf{J})] 모두 포함된다.] [math(\displaystyle \mathbf{\hat{J}}=(\hat{J}_{x},\,\hat{J}_{y},\,\hat{J}_{z}) )]는 다음의 [[교환자]] 관계를 만족시키는 연산자를 의미한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle [\hat{{J}}_{k},\,\hat{{J}}_{l}]=\sum_{m} i\hbar \varepsilon_{klm}\hat{J}_{m} )] }}} 각각의 성분에 대하여 다음이 성립한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{J}_{x},\,\hat{J}_{y}]&=i\hbar \hat{J}_{z} \\ [\hat{J}_{y},\,\hat{J}_{z}]&=i\hbar \hat{J}_{x} \\ [\hat{J}_{z},\,\hat{J}_{x}]&=i\hbar \hat{J}_{y} \end{aligned} )] }}} 이로써 알 수 있는 것은 양자역학적으로 각운동량의 각각의 성분은 '''동시 가측량이 아니라는 것'''이다. 각운동량 크기의 제곱 연산자 [math(\hat{J}^{2}=\hat{J}_{x}^{2}+\hat{J}_{y}^{2}+\hat{J}_{z}^{2})]을 고려하면, 위 교환자 관계에 의하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle [\hat{{J}}^{2},\,\hat{{J}}_{k}]=0 )] }}} 이 되어 각운동량 크기의 제곱과 한 축에 대한 각운동량의 성분은 '''동시 가측량이다.''' 종종 위와 같은 관계를 다음과 같이 한 번에 나타내기도 한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle i\hbar \mathbf{\hat{J}}=\mathbf{\hat{J}} \times \mathbf{\hat{J}} )] }}} 고전역학으로 각운동량을 이해하여 보자. 중심이 원점에 고정된 (매우 작은) 원판이 회전한다고 생각할 때, 양자역학적 상태를 잘 나타내는 것은 무엇인가? 위에서 교환자 관계를 보았던 것을 쓰면, 각운동량의 한 성분 [math(L_{z})](여기서는 [math(z)]축이라고 놓겠다.)과 각운동량의 크기 제곱 [math(L^{2})]은 동시 가측량이라고 했다. 그 외의 정보를 얻기 위해선 계의 정보를 파괴하지 않은 얻을 수 없다. 따라서 이러한 것을 잘 나타내는 것은 각운동량의 크기는 일정하면서 [math(z)]축 성분 또한 일정한 상태이다. 즉, 아래와 같이 [math(z)]축을 축으로 [[세차 운동]]하는 경우이다. [[파일:namu_양자_각운동량.svg|width=180&align=center&bgcolor=#ffffff]] 이 경우 위 그림처럼 각운동량 [math(\mathbf{L})]은 빗변의 길이가 [math(L=\sqrt{\mathbf{L} \boldsymbol{\cdot}\mathbf{L}}=\sqrt{L^{2}})]이고, 높이가 [math(L_{z})]인 [[원뿔]]에 연속적으로 나타나게 된다. === 고윳값과 고유함수 === ==== 사다리 연산자 ==== 우선 고윳값을 구하기 이전 [[양자 조화 진동자]]에서 했던 것 처럼 유용한 연산자를 도입하자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{+} :=\hat{J}_{x} +i\hat{J}_{y} \\ \hat{J}_{-} :=\hat{J}_{x} -i\hat{J}_{y} \end{aligned} )] }}} 이때, [math(\hat{J}_{-}=\hat{J}_{+}^{\dagger})]의 관계[* 따라서 이들은 [[에르미트 행렬]]이 아니므로 관측 가능한 값을 내놓지 않는다.]가 있으며, 각각을 상하 순으로 '''올림 연산자(raising operator)''', '''내림 연산자(lowering operator)'''라 부르며, 이들을 모두 지칭해 '''사다리 연산자(ladder operator)'''라 부른다. 또한 이전에 살펴봤던 교환자 관계에 의해 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{J}_{z},\,\hat{J}_{\pm}]&=\pm \hbar \hat{J}_{\pm} \\ [\hat{J}^{2},\,\hat{J}_{\pm}]&=0 \end{aligned} )] }}} 을 만족시킨다. 또한, ||<:> [math(\displaystyle \begin{aligned} \hat{J}_{\pm}\hat{J}_{\mp}&=(\hat{J}_{x} \pm i\hat{J}_{y})(\hat{J}_{x} \mp i\hat{J}_{y}) \\ &=\hat{J}_{x}^{2} \mp i (\hat{J}_{x}\hat{J}_{y}-\hat{J}_{y}\hat{J}_{x})+\hat{J}_{y}^{2} \\ &=\hat{J}_{x}^{2} \mp i [\hat{J}_{x},\,\hat{J}_{y}]+\hat{J}_{y}^{2} \\ &=\hat{J}_{x}^{2} \pm \hbar \hat{J}_{z}+\hat{J}_{y}^{2} &&(\because [\hat{J}_{x},\,\hat{J}_{y}]=i\hbar \hat{J}_{z}) \\ &=\hat{J}^{2}-\hat{J}_{z}^{2} \pm \hbar \hat{J}_{z} &&(\because \hat{J}^{2}=\hat{J}_{x}^{2}+\hat{J}_{y}^{2}+\hat{J}_{z}^{2}) \end{aligned} )] || 이므로 나중에 요긴하게 쓸 관계식 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}^{2}=\hat{J}_{\pm}\hat{J}_{\mp}+\hat{J}_{z}^{2} \mp \hbar \hat{J}_{z} \end{aligned} )] }}} 를 얻는다. 이외에도 위 결과를 약간 변형하면 다음의 관계식이 성립함이 알려져 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{J}_{+},\,\hat{J}_{-} ]&=2 \hbar \hat{J}_{z} \\ 2(\hat{J}^{2}-\hat{J}_{z}^{2})&=\hat{J}_{+}\hat{J}_{-}+\hat{J}_{-}\hat{J}_{+} \end{aligned} )] }}} ==== 고윳값 ==== 본격적으로 고윳값으로 들어가기 전에 다음을 가정하자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{z} \varphi_{m}=m \hbar \varphi_{m} \end{aligned} )] }}} [math(m)]은 밝혀내야 할 고윳값이고, [math(\varphi_{m})]은 고윳값 [math(m)]에 대응하는 고유함수이다. 우선 사다리 연산자가 어떠한 역할을 하는지 살펴보기 위해 고유함수에 사다리 연산자를 취하여 [math(L_{z})]를 측정해보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{z} \hat{J}_{\pm}\varphi_{m}&=(\hat{J}_{\pm}\hat{J}_{z} \pm \hbar \hat{J}_{\pm } )\varphi_{m} \\&=(m \pm 1) \hbar \hat{J}_{\pm}\varphi_{m} \end{aligned} )] }}} 이것은 사다리 연산자를 취한 고유함수 또한 [math(\hat{J}_{z})]에 대한 고유함수임을 나타내며, 사다리 연산자는 고윳값을 1만큼 올려주거나 내려준다. 따라서 다음과 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{\pm}\varphi_{m}& \propto \varphi_{m \pm 1} \end{aligned} )] }}} 이때, 사다리 연산자의 고윳값을 제외하고 쓰기 위해 비례 표시로 나타냈다. 사다리 연산자를 연속적으로 취한다면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{\pm}^{n}\varphi_{m}& \propto \varphi_{m \pm n} \end{aligned} )] }}} 위 논의는 [math(L_{z})]가 양자화되어 있음을 보여준다. 교환자 관계 [math([\hat{J}^{2},\,\hat{J}_{z}]=0)]을 기억한다면, 두 연산자에 대한 고유함수는 공유함을 알 수 있다.[* 일반적으로 교환하는 두 연산자에 대한 고유함수는 공유한다. 자세한 것은 [[교환자]] 문서를 참조하라.] 다음을 또한 가정하자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}^{2} \varphi_{m}=\hbar^{2} k^{2} \varphi_{m} \end{aligned} )] }}} [math(\hat{J}_{z})]와의 고유함수의 공유성 때문에 사다리 연산자를 취한 [math(\hat{J}_{z})]에 대한 고유함수 또한 해당 연산자의 고유함수가 된다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}^{2} \hat{J}_{\pm} \varphi_{m}&= \hat{J}_{\pm} \hat{J}^{2} \varphi_{m} \\&=\hbar^{2}k^{2} \hat{J}_{\pm} \varphi_{m} \end{aligned} )] }}} 따라서 [math(\hat{J}^{2})]의 교윳값은 사다리 연산자의 연산에 무관하다. 이제 목적은 [math(m)]과 [math(k)]는 어떠한 관계가 있는지 밝히는 것이다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle {J}^{2} \rangle &=\langle \varphi_{m}| \hat{J}^{2} \varphi_{m} \rangle \\ &=\hbar^{2}k^{2} \langle \varphi_{m}| \varphi_{m} \rangle \\ &=\hbar^{2}k^{2} \\ \langle {J}_{z}^{2} \rangle &=\langle \varphi_{m}| \hat{J}_{z}^{2} \varphi_{m} \rangle \\ &=\langle \varphi_{m}| \hat{J}_{z} \hat{J}_{z} \varphi_{m} \rangle \\ &=m \hbar\langle \varphi_{m}| \hat{J}_{z} \varphi_{m} \rangle \\ &=\hbar^{2}m^{2} \langle \varphi_{m}| \varphi_{m} \rangle \\&=\hbar^{2}m^{2} \end{aligned} )] }}} 이때, 이상 및 이하의 평균은 [math(m)]일 때 취한 것이다. 한편, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle {J}^{2} \rangle =\langle {J}_{x}^{2} \rangle +\langle {J}_{y}^{2} \rangle+ \langle {J}_{z}^{2} \rangle \quad \to \quad \hbar^{2}k^{2}=\langle {J}_{x}^{2} \rangle +\langle {J}_{y}^{2} \rangle +\hbar^{2}m^{2} \end{aligned} )] }}} 인데, 일반적으로 [math(\langle {J}_{x}^{2} \rangle \geq 0)], [math(\langle {J}_{y}^{2} \rangle \geq 0)]를 만족하므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} k^{2} \geq m^{2} \quad \to \quad |k| \geq |m| \end{aligned} )] }}} 사다리 연산자를 적용한 결과에서 [math(k)]값 하나에 여러 [math(m)]값을 갖는다고 보는 것이 합당하므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} -|k| \leq m \leq |k| \end{aligned} )] }}} 를 만족시켜야 한다. 즉, [math(m)]은 [math(-|k|)]와 [math(|k|)] 사이의 값을 갖는다. 한편, [math(m)]이 가질 수 있는 최댓값을 [math(m_{\sf{max}})], 최솟값을 [math(m_{\sf{min}})] 그렇다면, 이들에게 사다리 연산자를 적용했을 때 고윳값이 0이 나오게 하여 고윳값 방정식을 만족시키지 않게 함으로써 가질 수 있는 상태를 제한할 수 있다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{+}\varphi_{m_{\sf{max}} }&=0 \\ \hat{J}_{-}\varphi_{m_{\sf{min}} }&=0 \end{aligned} )] }}} 첫 번째 식에 내림 연산자를 적용해보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{-}\hat{J}_{+}\varphi_{m_{\sf{max}} }&=0 \end{aligned} )] }}} 그런데 윗 문단에서 논의한 관계식으로부터 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{-}\hat{J}_{+}\varphi_{m_{\sf{max}} }&=(\hat{J}^{2}-\hat{J}_{z}^{2}-\hbar \hat{J}_{z})\varphi_{m_{\sf{max}} } \\ &=\hbar^{2}(k^{2}-m_{\sf{max}}^{2}-m_{\sf{max}})\varphi_{m_{\sf{max}} } \end{aligned} )] }}} 우변은 모두 동일해야 하므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} k^{2}=m_{\sf{max}}^{2}+m_{\sf{max}} \end{aligned} )] }}} 마찬가지의 방법으로 아래 식에 대하여 행하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} k^{2}=m_{\sf{min}}^{2}-m_{\sf{min}} \end{aligned} )] }}} 위 식으로부터 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} m_{\sf{max}}^{2}+m_{\sf{max}}=m_{\sf{min}}^{2}-m_{\sf{min}} \end{aligned} )] }}} 이 방정식을 풂으로써 [math(m_{\sf{max}}=-m_{\sf{min}})]임을 얻고, [math(m_{\sf{max}}=j)]라 놓는다면, [math(k^{2}=j(j+1))]이다. 이때까지의 논의를 종합하면, [math(j)]값이 정해지면, 각운동량 크기의 제곱의 값 또한 정해지며, 이러한 각운동량 크기를 갖는 상태에서 한 축에 대한 성분은 [math(j)], [math(j-1)], [math(j-2)], [math(\cdots)], [math(-j)]의 [math(\hbar)]배 만큼의 값만 가질 수 있다. 그런데 조금 더 생각해보면, [math(j)], [math(j-1)], [math(j-2)], [math(\cdots)], [math(-j)]는 초항이 [math(j)]이고, 공차가 [math(-1)]인 [[등차수열]]이므로 이 과정을 [math(N)]번 하여 [math(-j)]에 도달했다고 하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} j+(N-1)(-1)=-j \end{aligned} )] }}} 이때, 다음을 만족시켜야 함을 알 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} 2j=N-1 \quad \to \quad j=\frac{N-1}{2} =\frac{n}{2} \end{aligned} )] }}} 한편, [math(n)]은 0을 포함한 자연수이므로 [math(j)]가 가질 수 있는 형태는 [math(1/2)]의 음이 아닌 정수배이다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} j=0,\,\frac{1}{2},\,1,\,\frac{3}{2},\, 2,\,\frac{5}{2},\,\cdots \end{aligned} )] }}} 만 가능하다. 일반적으로 궤도 각운동량의 경우 [math(j)]는 0을 포함한 자연수만, 스핀 각운동량은 모두 가능한 것으로 알려져 있다. 또한, 위 관계식으로부터 한 [math(j)]에 가능한 [math(m_{j})]의 값의 개수는 다음과 같음을 알 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} N=2j+1 \end{aligned} )] }}} 이상에서 각운동량에 대한 고유 상태를 기술하기 위해선 두 양자수 [math(j)]와 [math(m_{j})] ([math(m_{j}=)][math(j)], [math(\cdots)], [math(-j)])가 필요하며, 두 연산자에 대한 고윳값은 아래와 같이 주어진다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{z} \varphi_{j,\,m_{j}}&=m_{j} \hbar \varphi_{j,\, m_{j}} \\ \hat{J}^{2} \varphi_{j,\, m_{j}}&=j(j+1) \hbar^{2} \varphi_{j,\, m_{j}} \end{aligned} )] }}} 아래는 [math(l=3)], 즉, [math(L^{2}=12 \hbar^{2})]일 때, 가질 수 있는 궤도 각운동량 [math(\mathbf{L}_{m_{l}})]을 나타낸 것이다. 아래와 같이 이 경우 [math(L_{z}=\pm 3 \hbar)], [math(\pm 2 \hbar)], [math(\pm \hbar)], [math(0)]으로 총 7가지이다. 또, 위에서도 밝혔듯 [math(\mathbf{L}_{m_{l}})]은 고정되지 못하고, 원뿔 겉에서 연속적으로 나타나게 된다. [[파일:namu_양자_각운동량_궤도_예시.svg|width=250&align=center&bgcolor=#ffffff]] ===== 사다리 연산자의 고윳값 ===== 올림 연산자의 고윳값을 [math(C_{m})]이라 하고, 고유함수 [math(\varphi_{m}=| m \rangle)]의 ket-vector로 간단히 나타내자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} | \hat{J}_{+} m \rangle=C_{m} | m+1 \rangle \end{aligned} )] }}} 양변에 복소 공액을 취하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \hat{J}_{+} m |=\langle m+1 | C_{m}^{\ast} \end{aligned} )] }}} 이 결과를 처음의 ket-vector에 곱하면 좌변은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \hat{J}_{+} m | \hat{J}_{+} m \rangle &=\langle m | \hat{J}_{+}^{\dagger}\hat{J}_{+} m \rangle \\ &=\langle m | \hat{J}_{-}\hat{J}_{+} m \rangle \\ &=\langle m |\hat{J}^{2}-\hat{J}_{z}^{2}-\hbar \hat{J}_{z} | m \rangle \\&=\hbar^{2}(k^{2}-m^{2}-m)\langle m |m \rangle \\ &=\hbar^{2}(k^{2}-m^{2}-m) \end{aligned} )] }}} 이고, 우변은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle m+1 | C_{m}^{\ast} C_{m} | m+1 \rangle = |C_{m}|^{2} \end{aligned} )] }}} 이상에서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} C_{m}=\hbar \sqrt{k^{2}-m^{2}-m} \end{aligned} )] }}} 윗 문단에서 나오는 양자수를 이용하여 다음과 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} C_{m}&=\hbar [j(j+1)-m_{j}^{2}-m_{j}]^{1/2} \\&=\hbar[(j-m_{j})(j+m_{j}+1) ]^{1/2} \end{aligned} )] }}} 이를 이용하여 올림 연산자에 대한 고유치 방정식은 아래와 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{+} | j,\,m_{j} \rangle=\hbar[(j-m_{j})(j+m_{j}+1) ]^{1/2} | j,\,m_{j}+1 \rangle \end{aligned} )] }}} 마찬가지의 방법을 통해 내림 연산자의 고유치 방정식은 다음과 같음을 알 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}_{-} | j,\,m_{j} \rangle=\hbar[(j+m_{j})(j-m_{j}+1) ]^{1/2} | j,\,m_{j}-1 \rangle \end{aligned} )] }}} ==== 궤도 각운동량 연산자의 고유함수 ==== 회전 운동은 직각 좌표계가 아닌 곡면 좌표계에서 다루는 것이 편리하다. 이에 각 연산자를 구면 좌표계에 맞게 유도해보자. 직각 좌표계와 구면 좌표계의 변환 공식 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} x&=r\sin{\theta} \cos{\phi} \\y&=r\sin{\theta}\sin{\phi} \\ z&=r\cos{\theta} \end{aligned} )] }}} 를 통해 다음을 유도할 수 있다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \hat{L}_{x}&=i\hbar \left(\sin{\phi}\frac{\partial}{\partial \theta}+\cot{\theta}\cos{\phi} \frac{\partial}{\partial \phi} \right) \\ \hat{L}_{y}&=i\hbar \left(-\cos{\phi}\frac{\partial}{\partial \theta}+\cot{\theta}\sin{\phi} \frac{\partial}{\partial \phi} \right) \\ \hat{L}_{z}&=-i \hbar \frac{\partial}{\partial \phi} \\ \hat{L}^{2}&=-\hbar^{2} \left[ \frac{1}{\sin{\theta}}\frac{\partial}{\partial \theta} \left( \sin{\theta} \frac{\partial}{\partial \theta} \right)+\frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial^{2} \phi} \right] \end{aligned} )] }}} 찾는 [math(\hat{L}_{z})], [math(\hat{L}^{2})]의 고유함수를 구해보자. [math(\hat{L}_{z})]의 고유치 방정식 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \hat{L}_{z} \varphi_{l,\,m_{l}}=m_{l}\hbar \varphi_{l,\,m_{l}} \end{aligned} )] }}} [math(\varphi_{l,\,m_{l}}=\Theta(\theta) \Phi(\phi))]의 두 독립한 변수의 함수들의 곱으로 이루어져 있다고 가정하면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} -i \hbar \Theta(\theta) \frac{{\rm d}\Phi(\phi)}{{\rm d} \phi}&=m_{l}\hbar \Theta(\theta)\Phi(\phi) \\\frac{{\rm d}\Phi(\phi)}{{\rm d} \phi}&=im_{l}\Phi(\phi) \end{aligned} )] }}} 변수 분리를 통해 미분 방정식을 풀면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \Phi(\phi) \propto e^{i m_{l} \phi} \end{aligned} )] }}} 구면 대칭성 때문에 정수 [math(n)]에 대하여 [math( \Phi(\phi)= \Phi(\phi+2n \pi))]를 만족시켜야 하므로 [math(m_{l})]은 정수이다. 다행히도 두 연산자에 대한 고유함수는 공유하기 때문에 이 결과를 가지고, 그대로 [math(\hat{L}^{2})]의 고유치 방정식 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \hat{L}^{2} \varphi_{l,\,m_{l}}=l(l+1)\hbar^{2} \varphi_{l,\,m_{l}} \end{aligned} )] }}} 에 대입해도 된다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} -\hbar^{2} \left[ \frac{1}{\sin{\theta}}\frac{{\rm d} }{{\rm d} \theta} \left( \sin{\theta} \frac{{\rm d} \Theta(\theta)}{{\rm d} \theta} \right)-\frac{m_{l}^{2}}{\sin^{2}\theta} \Theta(\theta) \right]e^{im_{l}\phi}&=l(l+1)\hbar^{2}\Theta(\theta)e^{im_{l}\phi} \\ \frac{1}{\sin{\theta}}\frac{{\rm d} }{{\rm d} \theta} \left( \sin{\theta} \frac{{\rm d} \Theta(\theta)}{{\rm d} \theta} \right)-\frac{m_{l}^{2}}{\sin^{2}\theta} \Theta(\theta) &=-l(l+1)\Theta(\theta) \end{aligned} )] }}} [math(\cos{\theta}=x)]라 놓으면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \frac{{\rm d} }{{\rm d} \theta}=\frac{{\rm d}x }{{\rm d} \theta}\frac{{\rm d} }{{\rm d} x} =-\sin{\theta}\frac{{\rm d} }{{\rm d} x} \end{aligned} )] }}} 이므로 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \frac{{\rm d} \Theta}{{\rm d} x} \left[ (1-x^{2}) \frac{{\rm d} \Theta}{{\rm d} x} \right]+ \left[ l(l+1)-\frac{m_{l}^{2}}{1-x^{2}} \right] \Theta &=0 \\ (1-x^2)\frac{{\rm d}^{2} \Theta}{{\rm d} x^{2}}-2x\frac{{\rm d} \Theta}{{\rm d} x} + \left[ l(l+1)-\frac{m_{l}^{2}}{1-x^{2}} \right] \Theta &=0 \end{aligned} )] }}} 이 방정식은 [[버금 르장드르 함수]]를 해로 갖는 방정식이므로 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \Theta(x) \propto P_{l}^{m_{l}}(x) \end{aligned} )] }}} 이다. 위 결과를 종합하면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \varphi_{l, \, m_{l}}=| l,\,m_{l} \rangle\propto P_{l}^{m_{l}}(\cos{\theta}) e^{i m_{l} \phi} \end{aligned} )] }}} 인데, 위와 같은 꼴의 함수를 [[구면 조화 함수]]라 부른다. 하지만 우리는 이 함수에 대하여 규격화를 하지 않았기에 비례 표시를 제거할 수 없다. 이 함수는 [[입체각]]에 대하여 규격화를 한다. 즉, {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} \oint_{\Omega} \langle l, \, m_{l}|l, \, m_{l} \rangle\,{\rm d}\Omega=1 \end{aligned} )] }}} [math(\oint_{\Omega})]는 전체 입체각에 대한 적분을 의미한다. 따라서 규격화 상수를 [math(A)]라 놓으면 {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} |A|^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} [P_{l}^{m_{l}}(\cos{\theta}) e^{i m_{l} \phi}]^{\ast}[P_{l}^{m_{l}}(\cos{\theta}) e^{i m_{l} \phi}]\,\sin{\theta}\,{\rm d } \theta {\rm d } \phi=1 \end{aligned} )] }}} 이것을 만족하는 상수는 알려져있으며, 이것을 고려하면 규격화된 고유함수는 아래와 같음을 얻는다. {{{#!wiki style="text-align: center" [br][math(\displaystyle \begin{aligned} | l,\,m_{l} \rangle=\sqrt{\frac{2l+1}{4\pi} \frac{(l-m_{l})!}{(l+m_{l})!}}P_{l}^{m_{l}}(\cos{\theta}) e^{i m_{l} \phi} :=Y_{l}^{m_{l}}(\theta,\,\phi) \end{aligned} )] }}} 아래에서 [math(|Y_{l}^{m_{l}}|^{2})]의 그래프의 개형을 볼 수 있다. 단, 실제 크기가 아닌 한 [[정사각형]]의 가로 혹은 세로 길이에 규격화돼 있음에 유의하자. 물리학적으로 [math(|Y_{l}^{m_{l}}|^{2})]은 곧 입자의 편각과 방위각이 각각 [math((\theta,\,\phi))]인 곳의 미소 입체각에서 입자가 발견될 [[확률 밀도 함수]]를 나타낸다. 고전 역학과 달리 입자가 많이 발견되는 방위각과 편각이 존재함을 알 수 있다. || {{{#!folding [ 그래프 펼치기 · 접기 ] ||<^|1> [[파일:구면조화함수_그래프_namu_2.svg|width=100%]] ||}}} || 참고로, 스핀 각운동량의 경우 행렬 역학을 사용하기에 고유함수가 행렬로 나타난다. 나머지 축에 대한 각운동량은 어떻게 될까? 초급적으로 다가가보고자 한다. 우선 연산자 관계를 다시 생각해보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{{L}}_{k},\,\hat{{L}}_{l}]&=\sum_{m} i\hbar \varepsilon_{klm}\hat{L}_{m} \\ [\hat{{L}}^{2},\,\hat{{L}}_{k}]&=0 \end{aligned} )] }}} 이것을 동시에 만족시키게 하는 방법은 무엇일까? 결국 [math(l)]이 같은 구면 조화 함수의 결합이 곧 각 축에 대한 고유함수가 된다는 것이다. 이렇게 되어야 임의의 축과 각운동량 크기의 제곱이 동시 가측량이 되고, 해당 연산자들의 함수가 공유하게 되면서도 각 축의 성분에 대한 고유함수들은 공유하지 않는 상태가 된다. 즉, [math(\hat{L}_{x})]의 고유함수 [math(X_{l}^{\alpha})]는 [math(\hat{L}^{2})]의 고유함수의 결합 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} X_{l}^{\alpha}=\sum_{m_{l}=-l}^{l} a_{m_{l}} Y_{l}^{m_{l}} \end{aligned} )] }}} 으로 쓸 수 있다. 이때, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{x}X_{l}^{\alpha}=\alpha \hbar X_{l}^{\alpha} \end{aligned} )] }}} 를 만족시킬 것이다. 이때, [math(z)]축 성분과 동일한 형태의 고윳값을 갖는 것은 축이 달라진다고 해서 그 형태가 다르게 되면, 같은 물리 상황에 대해 축만 바꿨을 뿐인데 그 물리량이 달라지는 물리적 상황과 거리가 먼 상황이 연출되기 때문이다. 결국 이는 [math(\alpha)] 또한 [math(m_{l})]과 같은 제한 조건을 가짐을 암시하고 있다. [math(\hat{L}_{y})]의 고유함수와 고윳값도 동일하다. === 확률 분포 === 예를 들어 어떠한 상태에 있는 (스핀 각운동량이 없는) 한 입자에 대하여 한 축에 대한 각운동량 [math(3\hbar)]를 측정할 확률은 어떻게 구하는가? 또, 한 입자에 대하여 각운동량 크기가 [math(\sqrt{12}\hbar)]로 측정될 확률은 얼마인가? 이런 것을 다뤄보고자 한다. 일반적으로 입자의 상태에 대한 상태는 고유 함수의 중첩으로 설명될 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \psi=\sum_{l=0}^{\infty}\sum_{|m_{l}| \leq l} a_ {l,\,m_{l}} | l,\,m_{l} \rangle )] }}} 이때, [math(a_ {l,\,m_{l}})]은 다음과 같은 내적 {{{#!wiki style="text-align: center" [br] [math(\displaystyle a_ {l,\,m_{l}}= \langle l,\,m_{l}|\psi \rangle )] }}} 로 구할 수 있다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \psi=\sum_{l=0}^{\infty}\sum_{|m_{l}| \leq l} | l,\,m_{l} \rangle \langle l,\,m_{l}|\psi \rangle )] }}} 만약 이 상태에 있는 입자에 대하여 [math(L^{2}=\hbar^{2} \alpha(\alpha+1))]을 관측할 확률 [math(P[ \hbar^{2} \alpha(\alpha+1) ] )]은 다음과 같다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle P[ \hbar^{2} \alpha(\alpha+1) ] =\sum_{|m| \leq l} |\langle \alpha,\,m_{l}|\psi \rangle |^{2} )] }}} [math(L_{z}=m\hbar )]을 관측할 확률 [math(P[ m\hbar ] )]은 다음과 같다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle P[ m\hbar ] =\sum_{ l=|m|}^{\infty} |\langle l,\,m|\psi \rangle |^{2} )] }}} === 기댓값 === 입자의 각운동량이 [math(L=\hbar \sqrt{l(l+1)})], [math(L_{z}=m_{l}\hbar )]인 상태에 있다고 해보자. 이 경우 다음은 명백하다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{z} \rangle &= m_{l}\hbar \\ \langle L^{2} \rangle &= \hbar^{2} l(l+1) \end{aligned} )] }}} 그렇다면 나머지 축에 대한 물리량의 기댓값은 어떻게 될까? {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{x} \rangle &= \langle l,\,m_{l} | \hat{L}_{x} | l,\,m_{l} \rangle \end{aligned} )] }}} 여기서 [math(| l,\,m_{l} \rangle)]이 [math(\hat{L}_{x})]의 고유상태가 아니기 때문에 위 값을 구하기 어려울 것으로 보이지만 다행히도 사다리 연산자가 존재하기 때문에 조금 다가가볼 수 있을 것으로 기대된다. 사다리 연산자는 해당 상태의 고유상태가 되기 때문이다. 다음과 같이 쓰자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{x} &= \frac{1}{2}(\hat{L}_{+}+\hat{L}_{-}) \end{aligned} )] }}} 고유함수의 직교성에 따라 직접 계산해보지 않더라도 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{x} \rangle &=0 \end{aligned} )] }}} 이다. 이는 계산 과정에 양자수가 다른 상태의 고유함수의 [[내적]]이 포함되기 때문이다. 마찬가지의 이유로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{y} &= \frac{1}{2i}(\hat{L}_{+}-\hat{L}_{-}) \end{aligned} )] }}} 로 쓸 수 있고, 이것 또한 양자수가 다른 상태의 고유함수의 내적이 포함된다는 점에서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{y} \rangle &= \langle l,\,m_{l} | \hat{L}_{y} | l,\,m_{l} \rangle \\& =0 \end{aligned} )] }}} 위 결과는 [math(L)]과 [math(L_{z})]가 측정되었을 때 나머지 축에 대한 성분은 결정할 수 없음을 내포하고 있다. [math(\langle L_{x}^{2} \rangle)], [math(\langle L_{y}^{2} \rangle)]를 구해보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{x}^{2} \rangle &= \langle l,\,m_{l} | \hat{L}_{x}^{2} | l,\,m_{l} \rangle \end{aligned} )] }}} 인데, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{x}^{2} &= \left[ \frac{1}{2} (\hat{L}_{+}+\hat{L}_{-}) \right]^{2}=\frac{1}{4}(\hat{L}_{+}^{2}+\hat{L}_{+}\hat{L}_{-}+{L}_{-}\hat{L}_{+}+\hat{L}_{-}^{2}) \end{aligned} )] }}} 위에서 유도한 [math(\hat{L}^{2}=\hat{L}_{\pm}\hat{L}_{\mp}+\hat{L}_{z}^{2} \mp \hbar \hat{L}_{z} )]에 의해 가운데 두 항은 [math(2(\hat{L}^{2}-\hat{L}_{z}^{2}))]이고, 1항과 4항은 서로 다른 양자수의 고유함수의 내적을 포함시키므로 무시하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{x}^{2} \rangle &= \langle l,\,m_{l} | \hat{L}_{x}^{2} | l,\,m_{l} \rangle \\&= \biggl\langle l,\,m_{l} \biggl| \frac{1}{2}(\hat{L}^{2}-\hat{L}_{z}^{2}) \biggr| l,\,m_{l} \biggr\rangle \\&=\frac{\hbar^{2}}{2}[l(l+1)-m_{l}^{2}] \end{aligned} )] }}} 마찬가지의 방법으로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{y}^{2} &= \left[ \frac{1}{2i} (\hat{L}_{+}-\hat{L}_{-}) \right]^{2}=-\frac{1}{4}\{\hat{L}_{+}^{2}-(\hat{L}_{+}\hat{L}_{-}+{L}_{-}\hat{L}_{+})+\hat{L}_{-}^{2}\} \end{aligned} )] }}} 이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle L_{y}^{2} \rangle &= \frac{\hbar^{2}}{2}[l(l+1)-m_{l}^{2}] \end{aligned} )] }}} 이상에서 [math(\langle L_{x}^{2} \rangle=\langle L_{y}^{2} \rangle)]임을 얻는다. === [[불확정성 원리]] === 일반적으로 자기 수반인 두 연산자 [math(\hat{A})], [math(\hat{B})]에 대한 각각의 불확정성 [math(\Delta A)], [math(\Delta B)]는 다음과 같이 주어진다. (증명은 [[불확정성 원리]] 문서를 참조하자.) {{{#!wiki style="text-align: center" [br] [math(\displaystyle \Delta A \Delta B \geq \left| \frac{1}{2i} \langle \psi | [\hat{A},\,\hat{B}] | \psi \rangle \right| )] }}} [math(\psi)]가 [math(\hat{L}^{2})], [math(\hat{L}_{z})]에 대한 공통 고유 함수라 가정해보자.[* 즉, 입자의 상태함수가 구면 조화 함수로 주어지는 경우.] 교환자 관계에 의해 [math([\hat{L}_{x},\,\hat{L}_{y}]=i\hbar \hat{L}_{z})]이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \Delta L_{x} \Delta L_{y} \geq \frac{\hbar}{2} | \langle L_{z} \rangle | =\frac{\hbar}{2}(|m_{l}|\hbar) )] }}} 이다. 위 문단에서 다뤘던 것에서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \Delta L_{x}&=\sqrt{\langle L_{x}^{2} \rangle -\langle L_{x} \rangle^{2} } \\ &= \frac{\hbar}{\sqrt{2}}[l(l+1)-m_{l}^{2}]^{1/2} \\ \Delta L_{y}&=\sqrt{\langle L_{y}^{2} \rangle -\langle L_{y} \rangle^{2} } \\ &= \frac{\hbar}{\sqrt{2}}[l(l+1)-m_{l}^{2}]^{1/2} \\ \therefore \Delta L_{x} \Delta L_y &=\frac{\hbar^{2}}{2}[l(l+1)-m_{l}^{2}] \\&=\frac{\hbar}{2} \cdot {\hbar} [l(l+1)-m_{l}^{2}] \end{aligned} )] }}} 한편, 이것이 불확정성 원리를 만족시키는지 검증하려면, [math(l(l+1)-m_{l}^{2} \geq |m_{l}|)]임을 증명하면 된다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} l(l+1)-m_{l}^{2}-|m_{l}|&=l(l+1)-|m_{l}|^{2}-|m_{l}| \\ &=(l-|m_{l}|)(l+|m_{l}|+1) \end{aligned} )] }}} 양자수 조건에서 [math(|m_{l}| \leq l)]이므로 위 항은 0보다 같거나 크다. 즉, [math(l(l+1)-m_{l}^{2} \geq |m_{l}|)]이다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \Delta L_{x} \Delta L_y &=\frac{\hbar}{2} \cdot {\hbar} [l(l+1)-m_{l}^{2}] \\& \geq \frac{\hbar}{2}(|m_{l}| \hbar) \\&=\frac{\hbar}{2} | \langle L_{z} \rangle| \end{aligned} )] }}} 으로 불확정성 원리를 만족시킨다. == 추가 논의 == === 궤도 각운동량 연산자의 교환자 관계 === 궤도 각운동량 연산자의 교환자 관계는 궤도 각운동량을 다루면서 중요하게 다뤄지기 때문에 한 번씩은 유도해보는 편이 도움이 된다. 이 문단의 증명 과정에서 [[아인슈타인 합 규약]]이 사용(즉, 합의 기호에 대한 생략)되었다. 본 문단은 [[크로네커 델타]]와 [[레비치비타 기호]], [[아인슈타인 합 규약|합의 기호]], [[교환자]] 연산에 대해서 완벽히 이해하고 있다는 가정하에 작성되었다. 미숙한 독자들은 해당 문서들을 선수로 읽고 오는 것을 추천한다. 이 문단을 나가기 전 크로네커 델타와 레비치비타 기호, 교환자의 중요한 연산을 되짚어보고자 한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \delta_{ij}a_{j}&=a_{i} \\ \varepsilon_{ijk}\varepsilon_{ilm} &=\delta_{jl}\delta_{km}-\delta_{jm}\delta_{kl} \\ [AB,\,C]&=A[B,\,C]+[A,\,C]B \end{aligned} )] }}} 1. [math(\displaystyle [\hat{{L}}_{k},\,\hat{{L}}_{l}]= i\hbar \sum_{m} \varepsilon_{klm}\hat{L}_{m} )] ||
{{{#!folding [증명] ------- 궤도 각운동량 연산자의 정의로부터 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{i}=\varepsilon_{ijk} \hat{x}_{j}\hat{p}_{k} \end{aligned} )] }}} 이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{{L}}_{k},\,\hat{{L}}_{l}]&=[\varepsilon_{kab} \hat{x}_{a}\hat{p}_{b},\,\varepsilon_{lcd} \hat{x}_{c}\hat{p}_{d}] \\&=\varepsilon_{kab}\varepsilon_{lcd} [\hat{x}_{a}\hat{p}_{b}, \,\hat{x}_{c}\hat{p}_{d} ] \\&=\varepsilon_{kab}\varepsilon_{lcd} ( \hat{x}_{a} [\hat{p}_{b},\, \hat{x}_{c}\hat{p}_{d}]+[\hat{x}_{a},\,\hat{x}_{c}\hat{p}_{d}]\hat{p}_{b} ) \\&=-\varepsilon_{kab}\varepsilon_{lcd} \{\hat{x}_{a}(\hat{x}_{c} [ \hat{p}_{d},\,\hat{p}_{b}]+[\hat{x}_{c},\,\hat{p}_{b}]\hat{p}_{d})+(\hat{x}_{c}[\hat{p}_{d},\,\hat{x}_{a}]+[\hat{x}_{c},\,\hat{x}_{a}]\hat{p}_{d})\hat{p}_{b} \} \end{aligned} )] }}} 교환자 관계 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{p}_{i},\,\hat{p}_{j}]&=[\hat{x}_{i},\,\hat{x}_{j}]=0 \\ [\hat{x}_{i},\,\hat{p}_{j}]&=i \hbar \delta_{ij} \end{aligned} )] }}} 를 사용하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{{L}}_{k},\,\hat{{L}}_{l}]&=-i \hbar\varepsilon_{kab}\varepsilon_{lcd} (\delta_{cb}\hat{x}_{a}\hat{p}_{d}-\delta_{da}\hat{x}_{c}\hat{p}_{b} ) \\ &=i \hbar\varepsilon_{kab}\varepsilon_{lcd} (\delta_{da}\hat{x}_{c}\hat{p}_{b}-\delta_{cb}\hat{x}_{a}\hat{p}_{d} ) \\ &=i \hbar [ \varepsilon_{kab}\varepsilon_{lca} \hat{x}_{c}\hat{p}_{b} -\varepsilon_{kab}\varepsilon_{lbd}\hat{x}_{a}\hat{p}_{d} ]\\ &=i \hbar [ \varepsilon_{abk}\varepsilon_{alc} \hat{x}_{c}\hat{p}_{b} -\varepsilon_{bka}\varepsilon_{ bdl}\hat{x}_{a}\hat{p}_{d} ] \\ &=i \hbar [ ( \delta_{bl}\delta_{kc}-\delta_{bc} \delta_{kl} ) \hat{x}_{c}\hat{p}_{b} - ( \delta_{kd}\delta_{al}-\delta_{kl} \delta_{ad} ) \hat{x}_{a}\hat{p}_{d} ] \\ &=i \hbar ( \hat{x}_{k}\hat{p}_{l} - \hat{x}_{b}\hat{p}_{b} - \hat{x}_{l}\hat{p}_{k}+\hat{x}_{a}\hat{p}_{a} ) \\ &=i \hbar ( \hat{x}_{k}\hat{p}_{l} - \hat{x}_{l}\hat{p}_{k} ) \\&= i \hbar (\delta_{ek}\delta_{fl}-\delta_{el}\delta_{fk}) \hat{x}_{e}\hat{p}_{f} \\ &=i \hbar \varepsilon_{mef} \varepsilon_{mkl}\hat{x}_{e}\hat{p}_{f} \\&=i\hbar \varepsilon_{mkl} [ \varepsilon_{mef} \hat{x}_{e}\hat{p}_{f}] \\&=i\hbar \varepsilon_{mkl} \hat{L}_{m} \\&=i\hbar \varepsilon_{klm} \hat{L}_{m} \end{aligned} )] }}} }}} || 1. [math([\hat{L}^{2},\,\hat{L}_{k}]=0)] ||
{{{#!folding [증명] ------- 각 성분의 제곱에 대한 연산자는 성분의 연산자와는 교환 관계가 어떻게 되는지 알아보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{L}_{l}^{2},\,\hat{L}_{k}]&=[\hat{L}_{l}\hat{L}_{l},\,\hat{L}_{k}]\\&=\hat{L}_{l}[\hat{L}_{l},\,\hat{L}_{k}]+[\hat{L}_{l},\,\hat{L}_{k}]\hat{L}_{l}\\&=i\hbar \varepsilon_{lkm} [\hat{L}_{l}\hat{L}_{m}+ \hat{L}_{m}\hat{L}_{l}] \\&=i\hbar \varepsilon_{kml} [\hat{L}_{m}\hat{L}_{l}+\hat{L}_{l}\hat{L}_{m} ] \end{aligned} )] }}} 특히 [math(l=k)]일 때, [math([\hat{L}_{k}^{2},\,\hat{L}_{k}]=0)]이다. 단, [math(l)]이 결정된 상태이기 때문에 [math(m)]에 대한 합이라는 것에 유의한다. 이를 통해 중요한 연산자 관계 [math([\hat{L}^{2},\,L_{k}]=0)]를 유도할 수 있다. [math(\displaystyle \hat{L}^2=\sum_{l} \hat{L}_{l}^{2})]임을 이용하자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{L}^{2},\,\hat{L}_{k}]&= \left[\sum_{l}\hat{L}_{l}^{2},\hat{L}_{k}\right]\\&=\sum_{l}[\hat{L}_{l}^{2},\hat{L}_{k}] \\&=i\hbar \sum_{l} \varepsilon_{kml} [\hat{L}_{m}\hat{L}_{l}+\hat{L}_{l}\hat{L}_{m} ] \\&=0 \end{aligned} )] }}} 따라서 각운동량 크기의 제곱 연산자와 각 축의 성분에 대한 연산자는 교환하므로 동시 가측량이자, 공통된 고유함수를 공유한다. 다만, 각 축에 대한 성분의 연산자 끼리는 교환하지 않으므로 이들 모두가 동시 가측량과 고유함수를 공유한다고 생각하면 안 된다. }}}|| 1. [math(\displaystyle[\hat{x}_{k},\, \hat{L}_{l}]=i \hbar \sum_{m} \varepsilon_{klm}\hat{x}_{m})] ||
{{{#!folding [증명] ------- {{{#!wiki style="text-align: center" [math(\displaystyle \begin{aligned} [\hat{x}_{k},\, \hat{L}_{l}]&=[\hat{x}_{k},\, \varepsilon_{lab} \hat{x}_{a}\hat{p}_{b}] \\&=\varepsilon_{lab} [\hat{x}_{k},\, \hat{x}_{a}\hat{p}_{b}] \\&=- \varepsilon_{lab} (\hat{x}_{a}[\hat{p}_{b},\,\hat{x}_{k}]+[\hat{x}_{a},\,\hat{x}_{k}]\hat{p}_{b}) \\&=i \hbar \varepsilon_{lab}\delta_{bk}\hat{x}_{a} \\&=i \hbar \varepsilon_{lak}\hat{x}_{a} \\&=i \hbar \varepsilon_{klm}\hat{x}_{m} \end{aligned} )] }}} 즉, 각운동량과 위치는 같은 축에 대해서가 아닌 이상 동시 가측량이 아니다. }}}|| 1. [math(\displaystyle[\hat{p}_{k},\, \hat{L}_{l}]=i \hbar \sum_{m} \varepsilon_{klm}\hat{p}_{m})] ||
{{{#!folding [증명] ------- {{{#!wiki style="text-align: center" [math(\displaystyle \begin{aligned} [\hat{p}_{k},\, \hat{L}_{l}]&=[\hat{p}_{k},\, \varepsilon_{lab} \hat{x}_{a}\hat{p}_{b}] \\&=\varepsilon_{lab} [\hat{p}_{k},\, \hat{x}_{a}\hat{p}_{b}] \\&=- \varepsilon_{lab} (\hat{x}_{a}[\hat{p}_{b},\,\hat{p}_{k}]+[\hat{x}_{a},\,\hat{p}_{k}]\hat{p}_{b}) \\&=-i \hbar \varepsilon_{lab}\delta_{ak}\hat{p}_{b} \\&=-i \hbar \varepsilon_{lkb}\hat{p}_{b} \\&=i \hbar \varepsilon_{klm}\hat{p}_{m} \end{aligned} )] }}} 위치 연산자와 동일하다. }}}|| 1. [math(\displaystyle[\hat{p}_{k}^{2},\, \hat{L}_{l}]=2i \hbar \sum_{m} \varepsilon_{klm} \hat{p}_{k}\hat{p}_{m})] ||
{{{#!folding [증명] ------- {{{#!wiki style="text-align: center" [math(\displaystyle \begin{aligned} [\hat{p}_{k}^{2},\, \hat{L}_{l}]&=[\hat{p}_{k}\hat{p}_{k},\, L_{l}] \\&=\hat{p}_{k}[\hat{p}_{k},\, L_{l}]+[\hat{p}_{k},\, L_{l}]\hat{p}_{k} \\&=i \hbar \varepsilon_{klm} [\hat{p}_{k}\hat{p}_{m}+\hat{p}_{m}\hat{p}_{k}]\\&=2i \hbar \varepsilon_{klm} \hat{p}_{k}\hat{p}_{m} \end{aligned} )] }}} }}}|| 1. [math([\hat{p}_{k}^{2},\, \mathbf{\hat{L}}]=\mathbf{0} )] ||
{{{#!folding [증명] ------- [math(\mathbf{\hat{L}}=\displaystyle \sum_{l} \hat{L}_{l} \mathbf{e}_{l} )]이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{p}_{k}^{2},\, \mathbf{\hat{L}}]&= \left[\hat{p}_{k}^{2},\, \sum_{l} \hat{L}_{l} \mathbf{e}_{l} \right] \\&=\sum_{l}\mathbf{e}_{l}[\hat{p}_{k}^{2},\, \hat{L}_{l}] \\&=2i \hbar\sum_{l}\varepsilon_{klm} \mathbf{e}_{l} \hat{p}_{k}\hat{p}_{m} \\&=\mathbf{0} \end{aligned} )] }}} }}}|| 1. [math([\hat{p}^{2},\,\hat{L}_{l}]=0)] ||
{{{#!folding [증명] ------- {{{#!wiki style="text-align: center" [math(\displaystyle \begin{aligned} [\hat{p}^{2},\,\hat{L}_{l}]&=\sum_{k}[\hat{p}_{k}^{2},\,\hat{L}_{l}] \\&=2i \hbar \sum_{m,\,k} \varepsilon_{klm} \hat{p}_{k}\hat{p}_{m} \\&=2i \hbar \sum_{m,\,k} \varepsilon_{lmk} \hat{p}_{k}\hat{p}_{m} \\&=-2i \hbar \sum_{m,\,k} \varepsilon_{lkm} \hat{p}_{k}\hat{p}_{m} \end{aligned} )] }}} 그런데, [math(m)], [math(k)]는 더미 변수이기 때문에 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \sum_{m,\,k} \varepsilon_{lmk} \hat{p}_{k}\hat{p}_{m} =- \sum_{m,\,k} \varepsilon_{lmk} \hat{p}_{k}\hat{p}_{m} \end{aligned} )] }}} 이 성립하므로 이것은 곧 위 식의 값이 0임을 말한다. }}}|| 1. [math([\hat{p}^{2},\,\hat{L}^{2}]=0)] ||
{{{#!folding [증명] ------- {{{#!wiki style="text-align: center" [math(\displaystyle \begin{aligned} [\hat{p}_{k}^{2},\, \hat{L}_{l}^{2}]&=\hat{L}_{l}[\hat{L}_{l},\,\hat{p}_{k}^{2}]+[\hat{L}_{l},\,\hat{p}_{k}^{2}]\hat{L}_{l}\\ &=\hat{L}_{l}\hat{p}_{k}[\hat{p}_{k},\,\hat{L}_{l}]+\hat{L}_{l}[\hat{p}_{k},\,\hat{L}_{l}]\hat{p}_{k}+\hat{p}_{k}[\hat{p}_{k},\,\hat{L}_{l}]\hat{L}_{l}+[\hat{p}_{k},\,\hat{L}_{l}]\hat{p}_{k}\hat{L}_{l} \\&=i\hbar \varepsilon_{klm}[ \hat{L}_{l}\hat{p}_{k}\hat{p}_{m}+\hat{L}_{l}\hat{p}_{m}\hat{p}_{k}+\hat{p}_{k}\hat{p}_{m}\hat{L}_{l}+ \hat{p}_{m}{p}_{k} \hat{L}_{l} ] \\&=2i\hbar \varepsilon_{klm} [ \hat{L}_{l}\hat{p}_{k}\hat{p}_{m}+\hat{p}_{k}\hat{p}_{m}\hat{L}_{l} ]\\&=-2\hbar^{2} \varepsilon_{klm}\varepsilon_{lab} [ \hat{x}_{a}\hat{p}_{b} \hat{p}_{k}\hat{p}_{m}+\hat{p}_{k}\hat{p}_{m}\hat{x}_{a}\hat{p}_{b} ] \\ &=-2\hbar^{2} \varepsilon_{lmk}\varepsilon_{lab} [ \hat{x}_{a}\hat{p}_{b} \hat{p}_{k}\hat{p}_{m}+\hat{p}_{k}\hat{p}_{m}\hat{x}_{a}\hat{p}_{b} ] \\ &=-2\hbar^{2}(\delta_{ma}\delta_{kb}-\delta_{mb}\delta_{ka})[ \hat{x}_{a}\hat{p}_{b} \hat{p}_{k}\hat{p}_{m}+\hat{p}_{k}\hat{p}_{m}\hat{x}_{a}\hat{p}_{b} ] \\ &=-2\hbar^{2}\sum_{m \neq k}[ \hat{x}_{m}\hat{p}_{k} \hat{p}_{k}\hat{p}_{m}-\hat{x}_{k}\hat{p}_{m} \hat{p}_{k}\hat{p}_{m}+\hat{p}_{k}\hat{p}_{m}\hat{x}_{m}\hat{p}_{k}-\hat{x}_{k}\hat{p}_{m} \hat{p}_{k}\hat{p}_{m} ] \\ &=-2\hbar^{2}\sum_{m \neq k}[ \hat{x}_{m}\hat{p}_{k} \hat{p}_{k}\hat{p}_{m}-\hat{x}_{m}\hat{p}_{k} \hat{p}_{k}\hat{p}_{m}+\hat{p}_{k}\hat{p}_{m}\hat{x}_{m}\hat{p}_{k}-\hat{p}_{k}\hat{p}_{m}\hat{x}_{m}\hat{p}_{k} ] \\&=0 \\ \\ [\hat{p}^{2},\,\hat{L}_{l}^{2}]&=\sum_{k}[\hat{p}_{k}^{2},\,\hat{L}_{l}^{2}] \\&=0 \\ \\ \therefore [\hat{p}^{2},\,\hat{L}^{2}]&=\sum_{l}[\hat{p}^{2},\,\hat{L}_{l}^{2}] \\&=0 \end{aligned} )] }}} }}}|| 1. [math([\hat{p}^{2},\,\mathbf{\hat{L}}]=\mathbf{0})] ||
{{{#!folding [증명] ------- {{{#!wiki style="text-align: center" [math(\displaystyle \begin{aligned} [\hat{p}^{2},\, \mathbf{\hat{L}}]&= \sum_{k}[\hat{p}_{k}^{2},\, \mathbf{\hat{L}}] \\&=\mathbf{0} \end{aligned} )] }}} }}}|| ==== 운동 에너지 연산자와의 교환자 관계 ==== 운동 에너지 연산자 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{T}=\frac{\hat{p}^{2}}{2m}\end{aligned} )] }}} 이 성립하고, 위 문단으로부터 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{p}^{2},\,\hat{L}^{2}]=[\hat{p}^{2},\,\hat{L}_{l}]=0 \end{aligned} )] }}} 임을 증명한 바 있으므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{T},\,\hat{L}^{2}]=[\hat{T},\,\hat{L}_{l}]=0 \end{aligned} )] }}} 즉, 각운동량 제곱 연산자와 각운동량의 한축에 대한 성분 연산자는 운동 에너지 연산자와 교환하며, 이들은 동시 가측량이자 공통의 고유함수를 가진다. 한편, 자유입자의 경우 퍼텐셜은 없기 때문에 해밀토니언 연산자는 운동 에너지 연산자와 같으므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{\mathcal{H}},\,\hat{L}^{2}]=[\hat{\mathcal{H}},\,\hat{L}_{l}]=0 \end{aligned} )] }}} 이 성립한다. 또한 윗 문단에서 [math([\hat{p}^{2},\,\mathbf{\hat{L}}]=\mathbf{0})]임을 증명했으므로 위와 같은 논리로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{T},\,\mathbf{\hat{L}}]=\mathbf{0} \end{aligned} )] }}} 자유입자의 경우 [math([\hat{\mathcal{H}},\,\mathbf{\hat{L}}]=\mathbf{0})]이다. === 궤도 각운동량 기대치의 시간 변화 === 스핀이 없는 3차원상의 자유입자를 생각하자. 이 입자에 대한 [[해밀토니언]] 연산자에 대하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [ \hat{\mathcal{H}},\, \mathbf{\hat{L}}]=\mathbf{0} \end{aligned} )] }}} 임을 위에서 증명했다. 양자역학에서 기대치의 시간 전개는 다음과 같이 주어진다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{{\rm d}\langle A \rangle}{{\rm d}t}=\frac{i}{\hbar}\langle [\hat{\mathcal H},\,\hat{A}] \rangle +\biggl\langle \frac{\partial \hat{A}}{\partial t} \biggr\rangle \end{aligned} )] }}} 각운동량 연산자는 시간에 의존하지 않기 때문에 [math({\partial \mathbf{\hat{L}}}/{\partial t}=\mathbf{0})]이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{{\rm d}\langle \mathbf{L} \rangle}{{\rm d}t}= \mathbf{0} \end{aligned} )] }}} 고전역학에서 봤던 외력(외부 토크)이 없는 입자의 각운동량이 보존된다는 것과 유사한 결과를 얻었다. 허나, 고전역학의 경우 각운동량이 보존될 때, 운동은 한 평면에 기술된다는 결과를 얻었으나, 양자역학에서는 그러한 결론을 낼 수 없음에 유의해야 한다. === 회전 연산자 === 양자역학적으로 상태를 회전시키는 연산자가 존재하는가? [[연산자]] 문서에 나와있듯 그러한 연산자는 존재한다. 다만, 여기서는 간단한 초급적인 수학을 이용해서 그 연산자를 유도해보고자 한다. 회전은 각운동량과 관련이 있으므로 이 연산자가 포함될 것으로 기대된다. [[파일:namu_회전연산자_1.svg |width=160&align=center&bgcolor=#ffffff]] 어떠한 축과 평행한 단위벡터 [math(\mathbf{n})]을 고려하자.(이때 오른손 법칙을 만족하게 잡는다.) 이때, 축과 수직한 평면에서 무한소의 각만큼의 각 변화 [math(\delta \phi)]를 일으켰다고 하자.[* 무한소 회전을 생각하는 이유는 회전을 벡터로 다루기 위함이다.] 다음을 약속한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \delta \boldsymbol{\phi} := \delta \phi \,\mathbf{n} )] }}} 한편, 이에 따른 변위 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \delta \mathbf{r} = \delta \boldsymbol{\phi} \times \mathbf{r} )] }}} 로 주어진다. 어떠한 상태 [math(f(\mathbf{r}))]을 고려했을 때, 이러한 회전이 이루어지고 난 후의 상태는 [math(f(\mathbf{r}-\delta \mathbf{r}))]이다. [math(\delta r)]이 매우 작기 때문에 1차항까지 전개하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} f(\mathbf{r}-\delta \mathbf{r}) &= f(\mathbf{r})-\boldsymbol{\nabla}f(\mathbf{r}) \boldsymbol{\cdot} \delta \mathbf{r} \\ &=f(\mathbf{r})-\boldsymbol{\nabla}f(\mathbf{r}) \boldsymbol{\cdot} (\delta \boldsymbol{\phi} \times \mathbf{r}) \\ &=f(\mathbf{r})+ \delta \boldsymbol{\phi} \boldsymbol{\cdot} (\mathbf{r} \times \boldsymbol{\nabla}f(\mathbf{r}) ) \end{aligned})] }}} 한편, 각운동량 연산자 {{{#!wiki style="text-align: center" [br] [math(\displaystyle {\begin{aligned} \mathbf{\hat{L}}&=\mathbf{\hat{r}} \times \mathbf{\hat{p}} \\ &=-i\hbar \mathbf{\hat{r}} \times \boldsymbol{\nabla} \end{aligned}} \quad \Leftrightarrow \quad \mathbf{\hat{r}} \times \boldsymbol{\nabla}=\frac{i}{\hbar} \mathbf{\hat{L}} )] }}} 이것을 사용하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} f(\mathbf{r}-\delta \mathbf{r})&=f(\mathbf{r})+ \delta \boldsymbol{\phi} \boldsymbol{\cdot} \mathbf{\hat{L}} f(\mathbf{r}) \\&=\left(\hat{I}-\frac{i}{\hbar} \delta \boldsymbol{\phi} \boldsymbol{\cdot} \mathbf{\hat{L}} \right)f(\mathbf{r}) \end{aligned})] }}} [math(\hat{I})]는 항등 연산자, 즉 자기 자신을 내놓는 연산자이다. 이때 좌변은 곧 상태를 [math(\delta \phi)]만큼 회전시키는 연산자라 볼 수 있다. 그렇다면 [math(\Delta \phi:=\Phi \gg 1 )]만큼 회전시키는 나타내는 연산자는 어떻게 구해야 할까? 무한소각 [math(\delta \phi)]를 다음과 같이 쓰자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \delta \phi=\lim_{N \to \infty} \frac{\Phi}{N} \end{aligned})] }}} 또한 무한소각만큼의 회전을 무한히 반복하면 곧 일반적인 각 만큼의 회전에 도달할 것으로 기대되므로 구하는 연산자는 무한소각만큼 회전시키는 연산자를 무한히 상태에 작용시켜야 한다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}&=\lim_{N \to \infty} \left(\hat{I}-\frac{i}{\hbar} \frac{\boldsymbol{\Phi}}{N} \boldsymbol{\cdot} \mathbf{\hat{L}} \right)^{N} \\&= \lim_{N \to \infty} \left(\hat{I}-\frac{i}{\hbar} \boldsymbol{\Phi} \boldsymbol{\cdot} \mathbf{\hat{L}} \cdot \frac{1}{N} \right)^{N} \end{aligned})] }}} [[자연로그의 밑]]의 정의를 사용하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} e^{a}=\lim_{x \to \infty} \left( 1+\frac{a}{x} \right)^{x} \end{aligned})] }}} 이기 때문에 다음을 얻는다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}=\exp{\biggl(-\frac{i}{\hbar} \boldsymbol{\Phi} \boldsymbol{\cdot} \mathbf{\hat{L}} \biggr)} \end{aligned})] }}} 이때, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R} \neq \exp{\biggl(-\frac{i}{\hbar} \Phi_{x} \hat{L}_{x} \biggr)} \exp{\biggl(-\frac{i}{\hbar} \Phi_{y} \hat{L}_{y} \biggr)} \exp{\biggl(-\frac{i}{\hbar} \Phi_{z} \hat{L}_{z} \biggr)} \end{aligned})] }}} 임에 유의해야 한다. 그 이유는 위 연산이 연산자에 관한 것이라는 점과 각 축의 성분에 대한 각운동량 연산자는 서로 교환하지 않는 점 때문이다. 간단한 경우로 [math(\boldsymbol{\Phi}=\mathbf{e}_{z}\phi )]인 경우를 고려하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}=\exp{\biggl(-\frac{i}{\hbar} \phi \hat{L}_{z} \biggr)} \end{aligned})] }}} 이것은 상태를 [math(z)]축을 회전축으로 하여 회전시키는 연산자가 된다. 쉽게 생각하기 위해서 회전축이 [math(z)]축인 경우에 한해서 생각해보자. 이때 역회전은 무엇일까? [math(-\phi)] 만큼 회전시키는 것과 같을 것이다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}^{-1}=\exp{\biggl(\frac{i}{\hbar} \phi \hat{L}_{z} \biggr)} \end{aligned})] }}} 이것은 곧 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}^{-1}\hat{R}=\hat{I} \end{aligned})] }}} 를 의미한다. 한편, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}^{\dagger}&=\sum_{k} \frac{1}{k!} \left[ \left( -\frac{i}{\hbar}\phi \hat{L}_{z} \right)^{k} \right]^{\dagger} \\&=\sum_{k} \frac{1}{k!} \left[ \left( -\frac{i}{\hbar}\phi \hat{L}_{z} \right)^{\dagger} \right]^{k} \\&= \sum_{k} \frac{1}{k!} \left[ \left( \frac{i}{\hbar}\phi \hat{L}_{z}^{\dagger} \right)\right]^{k} \end{aligned})] }}} 이때, [math(\hat{L}_{z})]는 자기 수반이므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}^{\dagger}&= \sum_{k} \frac{1}{k!} \left[ \left( \frac{i}{\hbar}\phi \hat{L}_{z} \right)\right]^{k} \\&= \exp{\biggl(\frac{i}{\hbar} \phi \hat{L}_{z} \biggr)} \\&=\hat{R}^{-1} \end{aligned})] }}} 따라서 다음이 성립한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}^{\dagger} \hat{R}=\hat{I} \end{aligned})] }}} 이러한 연산자를 '''유니타리 연산자'''라 한다. 유사한 논의를 거쳐 다음 또한 성립함을 알 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned}\hat{R} \hat{R}^{\dagger} =\hat{I} \end{aligned})] }}} 쉬운 유도를 위해 특수한 경우만을 생각했지만 실제론 임의의 축에 대한 회전 연산자 또한 성립한다. 이 문단은 엄밀하게 유도되거나 증명된 것은 아니다. 깊게 파고들면 곧 [[군론(물리학)|군론]]과 맞닥뜨리게 되고, 생각보다 깊은 수준의 [[선형대수학]]이 필요하다. === 다시 찾아본 각운동량 보존 === 아무 것도 없는 우주상에서 (자유) 입자를 관측한다고 생각해보자. 회전 연산자를 상태에 가하면 이 상태는 한 축을 기준으로 회전이 가해지게 된다. 회전하기 전 기술되는 상태를 [math(| \mathbf{r} \rangle )]이라 해보자. 이때, 해밀토니언은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \mathcal H \rangle = \langle \mathbf{r} |\hat{\mathcal H}| \mathbf{r} \rangle \end{aligned})] }}} 이다. 그런데 약간의 (무한소각의) 회전을 했다고 한 순간에 했다고 생각해보자. 공간이 등방적이기 때문에 해밀토니언은 회전(관찰자가 관측하는 "회전 상태"가 아니다.)에 무관해야 한다.[* 공간의 어디 방향으로 보나 똑같은 상황이다. 그런데 입자의 (관측자 입장에서 관측한) 위치가 변한다고 해서 입자의 에너지가 달라지겠는가?][* 회전 연산자는 곧 회전변환의 일종이다. 해밀토니언은 스칼라이기 때문에 이러한 변환에 불변이다.] 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \mathcal H \rangle = \langle \mathbf{r}+\delta \mathbf{r} |\hat{\mathcal H}| \mathbf{r}+\delta \mathbf{r} \rangle \end{aligned})] }}} 한편, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} | \mathbf{r}+\delta \mathbf{r} \rangle &= \hat{R} | \mathbf{r} \rangle \\ \langle \mathbf{r}+\delta \mathbf{r} | &= \langle \hat{R} \mathbf{r} | \\&=\langle \mathbf{r} | \hat{R}^{\dagger} \end{aligned})] }}} 이므로 위 식을 다음과 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \mathcal H \rangle = \langle \mathbf{r} |\hat{R}^{\dagger}\hat{\mathcal H} \hat{R} | \mathbf{r} \rangle \end{aligned})] }}} 이상에서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal H} = \hat{R}^{\dagger}\hat{\mathcal H} \hat{R} \end{aligned})] }}} [math(\hat{R})]은 유니타리 연산자이기 때문에 [math(\hat{R}\hat{R}^{\dagger}=\hat{I})]이므로 양변에 [math(\hat{R})]을 곱하고 정리하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal H} \hat{R}-\hat{R} \hat{\mathcal H} =[\hat{\mathcal H},\,\hat{R}]=0 \end{aligned})] }}} 그런데 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{R}=\hat{I}-\frac{i}{\hbar} \delta\boldsymbol{\phi} \boldsymbol{\cdot} \mathbf{\hat{L}} \end{aligned})] }}} 항등 연산자는 해밀토니언 연산자와 교환하며, 이에 따라 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{\mathcal H},\,\delta\boldsymbol{\phi} \boldsymbol{\cdot}\mathbf{\hat{L}}]=\delta\boldsymbol{\phi} \boldsymbol{\cdot} [\hat{\mathcal H},\,\mathbf{\hat{L}}]=0 \end{aligned})] }}} 를 만족시켜야 하는데, 임의의 회전을 고려하므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{\mathcal H},\,\mathbf{\hat{L}}]=0 \end{aligned})] }}} 이것은 곧 다음을 의미한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{{\rm d}\langle \mathbf{L} \rangle}{{\rm d}t}= \mathbf{0} \end{aligned} )] }}} 즉, 공간의 등방성은 각운동량의 보존을 이끌어낸다는 것이 양자역학에서도 확인된 것이다. === 궤도 각운동량의 덧셈 === 스핀이 없는 입자가 두 개 있는 경우를 생각해보자. (물론, 여러 개 있는 경우도 가능할 것이나 수준상 두 개인 경우만 다루도록 하자.) 두 입자는 상호작용하지 않는다고 가정하자. 이 계의 총 각운동량은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \mathbf{L}=\mathbf{L}_{1}+\mathbf{L}_{2} \end{aligned} )] }}} 로 나타낼 수 있을 것이므로 연산자 연산 또한 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \mathbf{\hat{L}}=\mathbf{\hat{L}}_{1}+\mathbf{\hat{L}}_{2} \end{aligned} )] }}} 으로 나타낼 수 있다. 한편, 서로 다른 입자에 대한 연산자는 서로 교환한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{L}_{j1},\,\hat{L}_{j2}]=0 \end{aligned} )] }}} 교환자 관계 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{L}^{2},\,\hat{L}_{z}]=[\hat{L}^{2},\,\hat{L}_{z1}]+[\hat{L}^{2},\,\hat{L}_{z2}] \end{aligned} )] }}} 를 조사해보자. 한편, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}^{2}&=\mathbf{\hat{L}} \boldsymbol{\cdot} \mathbf{\hat{L}} \\ &=(\mathbf{\hat{L}}_{1}+\mathbf{\hat{L}}_{2}) \boldsymbol{\cdot} (\mathbf{\hat{L}}_{1}+\mathbf{\hat{L}}_{2}) \\&=\hat{L}_{1}^{2}+\hat{L}_{2}^{2}+2\mathbf{\hat{L}}_{1} \boldsymbol{\cdot} \mathbf{\hat{L}}_{2} \end{aligned} )] }}} 각 각운동량 연산자는 궤도 각운동량의 기본적인 교환자 관계를 만족한다. 즉, 계산에 기여하는 것은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} 2 \{ [\mathbf{\hat{L}}_{1} \boldsymbol{\cdot} \mathbf{\hat{L}}_{2},\,\hat{L}_{z1}]+[\mathbf{\hat{L}}_{1} \boldsymbol{\cdot} \mathbf{\hat{L}}_{2},\,\hat{L}_{z2}] \}&=2 \{ [\mathbf{\hat{L}}_{1} ,\,\hat{L}_{z1}]\boldsymbol{\cdot} \mathbf{\hat{L}}_{2}+\mathbf{\hat{L}}_{1} \boldsymbol{\cdot}[ \mathbf{\hat{L}}_{2},\,\hat{L}_{z2}] \} \end{aligned} )] }}} 다음을 이용하면, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\mathbf{\hat{L}}_{1} ,\,\hat{L}_{z1}]&=\mathbf{e}_{x}[\hat{L}_{x1},\,\hat{L}_{z1}]+\mathbf{e}_{y}[\hat{L}_{y1},\,\hat{L}_{z1}]+\mathbf{e}_{z}[\hat{L}_{z1},\,\hat{L}_{z1}] \\&=i\hbar \{ -\mathbf{e}_{x} \hat{L}_{y1} + \mathbf{e}_{y} \hat{L}_{x1} \} \\ [\mathbf{\hat{L}}_{2} ,\,\hat{L}_{z2}]&=i\hbar \{- \mathbf{e}_{x} \hat{L}_{y2} + \mathbf{e}_{y} \hat{L}_{x2} \} \end{aligned} )] }}} 아래와 같이 나오게 된다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{L}^{2},\,\hat{L}_{z}]=0 \end{aligned} )] }}} 즉, 계의 각운동량 연산자 또한 기본적인 궤도 각운동량의 교환자 관계를 만족시킨다. 또한, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{L}_{k} ,\,\hat{l}_{m}]&=[\hat{L}_{k1}+\hat{L}_{k2} ,\,\hat{L}_{l1}+\hat{L}_{l2}] \\ &=[\hat{L}_{k1} ,\,\hat{L}_{l1}]+[\hat{L}_{k2} ,\,\hat{L}_{l2}]+[\hat{L}_{k1} ,\,\hat{L}_{l2}]+[\hat{L}_{k2} ,\,\hat{L}_{l1}] \\&=i\hbar \sum_{m} \varepsilon_{lmn} ( \hat{L}_{m1}+\hat{L}_{m2} ) \qquad (\because [\hat{L}_{i1},\,\hat{L}_{j2}]=0) \\&= i\hbar \sum_{m} \varepsilon_{lmn} \hat{L}_{m} \end{aligned} )] }}} 으로 각운동량의 정의에 부합한다.[* 사실 각운동량의 합은 총 각운동량의 일종이므로 증명하지 않아도 이렇게 됨을 쉽게 예상할 수 있다.] 따라서 다음과 같이 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}^{2} | l,\,m,\,l_{1},\,l_{2} \rangle &=\hbar^{2}l(l+1)| l,\,m,\,l_{1},\,l_{2} \rangle \\ \hat{L}_{z} | l,\,m,\,l_{1},\,l_{2} \rangle &=m\hbar| l,\,m,\,l_{1},\,l_{2} \rangle \end{aligned} )] }}} 아래는 증명치 않겠지만 모두 교환하는 교환자의 집합이다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \{ \hat{L}^{2},\,\hat{L}_{z},\,\hat{L}_{1}^{2},\,\hat{L}_{2}^{2} \},\,\{ \hat{L}_{1}^{2},\,\hat{L}_{2}^{2},\,\hat{L}_{z1},\,\hat{L}_{z2} \} \end{aligned} )] }}} 따라서 이 계를 기술하는데 [math(\{ l,\,m,\,l_{1},\,l_{2} \})], [math(\{ l_{1},\,m_{1},\,l_{2},\,m_{2} \})]는 각각 계를 기술하기 좋은 양자수가 된다. 그런데 우리는 단일 계의 상태에 대해서만 아는 상태이므로 후자를 사용하도록 하자. 즉, 해당 계는 [math(\{ l_{1},\,m_{1},\,l_{2},\,m_{2} \})]를 사용하여 기술할 수 있다. 마찬가지로 증명은 생략하지만 이 경우 계의 기저는 본래 단일 계의 직접곱(direct product)을 사용, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} |l_{1} ,\,m_{1} \rangle \otimes |l_{2} ,\,m_{2} \rangle \equiv | l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \end{aligned} )] }}} 로 선택할 수 있다. 이때, 단일 계의 경우 차원이 [math(2l_{j}+1)]이므로 해당 계의 차원은 [math((2l_{1}+1)(2l_{2}+1))]이다. 다만 주의해야 할 것은 두 좋은 양자수의 집합에 대한 기저는 동일한 상태를 나타내는 기저는 아니다. 우리가 찾고자 하는 공간의 기저(결합된 상태)를 알고 있는 공간의 기저(결합되지 않는 상태)로 나타내고자 하는 것이 포인트이다. 벡터 공간에서 한 기저는 다른 기저로 전개할 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} | l,\,m,\,l_{1},\,l_{2} \rangle=\sum_{m_{1},\, m_{2}} | l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle \end{aligned} )] }}} 이때 나온 계수 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle \equiv C_{m_{1},\,m_{2}} \end{aligned} )] }}} 를 '''클렙슈-고르단 계수(Clebsch-Gordan coefficient)'''라 한다. 위치표현에서 파동함수의 형태는 두 입자의 좌표 [math((\theta_{1},\,\phi_{1}))], [math((\theta_{2},\,\phi_{2}))]에 대한 사영을 사용하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \theta_{1},\,\phi_{1},\,\theta_{2},\,\phi_{2}| l,\,m,\,l_{1},\,l_{2} \rangle &=\sum_{m_{1},\, m_{2}}C_{m_{1},\,m_{2}} \langle \theta_{1},\,\phi_{1}| l_{1},\,m_{1} \rangle \otimes \langle \theta_{2},\,\phi_{2}| l_{2},\,m_{2} \rangle \\&=\sum_{m_{1},\, m_{2}}C_{m_{1},\,m_{2}} Y_{l_{1}}^{m_{1}}(\theta_{1},\,\phi_{1})Y_{l_{2}}^{m_{2}}(\theta_{2},\,\phi_{2}) \end{aligned} )] }}} 으로 구할 수 있다. 이제부터는 [math(l)], [math(m)], [math(m_{1})], [math(m_{2})]의 관계를 보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}_{z}| l,\,m,\,l_{1},\,l_{2} \rangle &=m\hbar | l,\,m,\,l_{1},\,l_{2} \rangle \\&= \sum_{m_{1},\, m_{2}} m\hbar | l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle \\ \\ \hat{L}_{z}| l,\,m,\,l_{1},\,l_{2} \rangle &=\sum_{m_{1},\, m_{2}} \hat{L}_{z}| l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle \\&=\sum_{m_{1},\, m_{2}} (\hat{L}_{z1}+\hat{L}_{z2}) | l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle \\&=\sum_{m_{1},\, m_{2}} \hbar(m_{1}+m_{2}) | l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle \end{aligned} )] }}} 두 결과로부터 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \sum_{m_{1},\,m_{2}}\{ m-(m_{1}+m_{2}) \}| l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle \langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle =0 \end{aligned} )] }}} 고려하는 [math(| l_{1},\,l_{2},\,m_{1},\,m_{2} \rangle)]은 선형독립인 기저이므로 등식이 되려면 다음을 만족시켜야 한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned}\{ m-(m_{1}+m_{2}) \}\langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle =0 \end{aligned} )] }}} 그런데 [math(\langle l_{1},\,l_{2},\,m_{1},\,m_{2} | l,\,m,\,l_{1},\,l_{2} \rangle =0)]인 항은 전개에 기여하지 않으므로 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \therefore m=m_{1}+m_{2} \end{aligned} )] }}} 이다. 두 계의 각운동량의 합을 계산하는 것이기에 단일 계 처럼 [math(l)] 값이 단일로 존재하지 않는다는 것을 직감할 수 있다. [math(m \leq l)], [math(m_{1} \leq l_{1})], [math(m_{2} \leq l_{2})]을 만족하므로 최대의 [math(l_{\sf{max}}=m_{1}+m_{2})]이 된다. 이 경우 차원을 살펴보자. [math( |m_{1}| \leq l_{1} )], [math( |m_{2}| \leq l_{2} )]에서 가능한 [math(l)]은 [math(2l+1=2(l_{1}+l_{2})+1)]개이다. 허나, 이것은 위에서 지적했던 복합계의 기저의 차원 [math((2l_{1}+1)(2l_{2}+1))]이 아니므로 다음의 가능성 [math(l=l_{1}+l_{2}-1)]을 고려해보자. 이 경우 차원은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} 2(l_{1}+l_{2}-1)+1 \end{aligned} )] }}} 둘을 더해도 [math((2l_{1}+1)(2l_{2}+1))]이 아니므로 다음 가능성 [math(l=l_{1}+l_{2}-2)]를 고려하고, [math(\cdots)], [math(l_{\sf{min}}=x)]를 그 차원의 합이 [math((2l_{1}+1)(2l_{2}+1))]이 될 때까지 생각한다. 이는 초항이 [math(2(l_{1}+l_{2})+1)]이고, 공차가 -2인 [[등차수열]]이므로 [math(N)]항일 때, [math(l_{\sf{min}}=x)]이라면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} 2(l_{1}+l_{2})+1-2(N-1)=2x+1 \end{aligned} )] }}} 이것을 정리함으로써 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} N=(l_{1}+l_{2})+1-x \end{aligned} )] }}} 를 얻는다. 등차수열의 합 공식에 의하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{1}{2}[(l_{1}+l_{2})+1-x][\{2(l_{1}+l_{2})+1\}+(2x+1) ]=(2l_{1}+1)(2l_{2}+1) \end{aligned} )] }}} [math(2l_{1}+1 =a)], [math(2l_{1}+1 =b)]로 치환하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{1}{2}\left\{\frac{1}{2} (a+b )-x \right\}(a+b+2x)&=ab \\ \{(a+b)-2x \}(a+b+2x)&=4ab \\ (a+b)^{2}-4x^2&=4ab \\ \frac{1}{4}(a-b)^{2}&=x^{2} \\ \frac{1}{4}(2l_{1}-2l_{2})^{2}&=x^{2} \\(l_{1}-l_{2})^{2}&=x^{2} \end{aligned} )] }}} [math(2l=n)]([math(n)]은 음이 아닌 정수)라는 조건으로부터 [math(x \geq 0)]이므로 그 해는 [math(x=|l_{1}-l_{2}|)]이다. 즉, 가능한 [math(l)]은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} l_{1}+l_{2},\,l_{1}+l_{2}-1,\,l_{1}+l_{2}-2,\, \cdots ,\, |l_{1}-l_{2}| \end{aligned} )] }}} 이다. 아래의 그림의 [math(\rm (a))]는 결합 전 각운동량 상태를, [math(\rm (b))]는 결합 후 각운동량 상태를 모식도로 나타낸 것이다. [[파일:namu_각운동량_결합.svg|width=400&align=center&bgcolor=#ffffff]] 결합 후에는 [math(L_{z1})]과 [math(L_{z2})]는 더 이상 '''보존되지 않는다.''' 이 의미를 알아보자. 우리가 단일계에서 각운동량의 한 축에 대한 성분이나 크기를 얻을 수 있었던 것은 각 물리량이 보존이 되기 때문이었다. 어떤 상태에 있는 두 입자계에서 각각의 입자의 각운동량의 한 축의 성분을 측정 후엔 [math(|l_{1},\,m_{1},\,l_{2},\,m_{2} \rangle)]의 상태, 즉 그림 (a)와 같은 상태로 남을 것이다. 하지만 이 상태에서 계의 총 각운동량의 크기 또는 한 축의 성분을 측정한다고 생각해보자. 이 상태에서 [math(|l_{1},\,m_{1},\,l_{2},\,m_{2} \rangle)]의 상태는 측정에 대하여 고유상태가 아니기 때문에 계의 정보가 파괴돼버리고, 해당 물리량들이 결정된 후 상태는 [math(|l,\,m,\,l_{1},\,l_{2} \rangle)], 즉 (b)와 같이 바뀌게 된다. 이 상태에서는 각각의 각운동량의 한 성분에 대한 측정에 대하여 고유상태가 아니므로 이들을 계의 정보를 파괴하지 않는 한 얻을 수 없다. 즉, 단일계에서 한 축이 아닌 다른 물리량은 보존되지 않아 결정할 수 없었던 것을 생각해보면 이는 본 그림과 같이 각 성분이 보존되지 않아야 함을 암시하고 있다. 이때, 전자를 '''비결합 표현(uncoupled representation)''', 후자를 '''결합 표현(coupled representation)'''이라 한다. 따라서 '''양자역학에서는 계의 물리량을 측정하는지 계의 구성원 각각의 물리량을 측정하는지에 따라 계의 상태가 파괴될 수 있다.''' ==== 총 각운동량의 덧셈 ==== 이론은 완전히 동일하다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \mathbf{\hat{J}}=\mathbf{\hat{J}}_{1}+\mathbf{\hat{J}}_{2} \end{aligned} )] }}} 이고, 고유치 방정식은 다음과 같다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{J}^{2}| j,\,m,\,j_{1},\,j_{2} \rangle&=\hbar^{2}j(j+1) | j,\,m,\,j_{1},\,j_{2} \rangle \\ \hat{J}_{z}| j,\,m,\,j_{1},\,j_{2} \rangle&=m \hbar | j,\,m,\,j_{1},\,j_{2} \rangle\end{aligned} )] }}} [math(\{ j,\,m,\,j_{1},\,j_{2} \})], [math(\{ j_{1},\,m_{1},\,j_{2},\,m_{2} \})]는 그 연산자의 교환관계에 따라 계를 기술하기 좋은 양자수가 되어, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} | j,\,m,\,j_{1},\,j_{2} \rangle &=\sum_{m_{1},\, m_{2}} | j_{1},\,j_{2},\,m_{1},\,m_{2} \rangle \langle j_{1},\,j_{2},\,m_{1},\,m_{2} | j,\,m,\,j_{1},\,j_{2} \rangle \\&=\sum_{m_{1},\, m_{2}} C_{m_{1},\,m_{2}} | j_{1},\,j_{2},\,m_{1},\,m_{2} \rangle \end{aligned} )] }}} 로 전개 가능하며, 다음을 만족시킨다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} m=m_{1}+m_{2} \end{aligned} )] }}} 또한, 궤도 각운동량 때와 마찬가지로 가능한 [math(j)]값은 다음과 같다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} j=j_{1}+j_{2},\,j_{1}+j_{2}-1,\,j_{1}+j_{2}-2,\,\cdots,\,|j_{1}-j_{2}| \end{aligned} )] }}} === [[구면좌표계]]에서의 기술 === 고전역학적으로 주어진 각운동량을 제곱함으로써 다음을 얻는다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} L^{2}&=(\mathbf{r} \times \mathbf{p}) \boldsymbol{\cdot} (\mathbf{r} \times \mathbf{p}) \\&=r^{2}p^{2}-(\mathbf{r} \boldsymbol{\cdot} \mathbf{p})^{2} \\&= r^{2}p^{2}-r^{2}(\mathbf{e}_{r} \boldsymbol{\cdot} \mathbf{p})^{2} \end{aligned} )] }}} 이것을 다시쓰면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} p^{2}=(\mathbf{e}_{r} \boldsymbol{\cdot} \mathbf{p})^{2}+\frac{L^{2}}{r^{2}} \end{aligned} )] }}} 이때, [math(\mathbf{e}_{r} \boldsymbol{\cdot} \mathbf{p}=p_{r})], 즉 운동량의 지름 성분이라 생각할 수 있고, 약간의 조작을 거치면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{p^{2}}{2m}=\frac{p_{r}^{2}}{2m}+\frac{L^{2}}{2mr^{2}} \end{aligned} )] }}} 으로 운동 에너지를 얻을 수 있다. 즉, 운동 에너지를 지름 방향의 운동의 것과 회전에 의한 운동의 것으로 나눈 것이다. 즉, 입자의 해밀토니언은 퍼텐셜 [math(V)]를 도입하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} H=\frac{p_{r}^{2}}{2m}+\frac{L^{2}}{2mr^{2}}+V \end{aligned} )] }}} 얼핏 보면 양자역학에서도 이것이 가능할 것처럼 보인다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal{H}}=\frac{\hat{p}_{r}^{2}}{2m}+\frac{\hat{L}^{2}}{2mr^{2}}+\hat{V} \end{aligned} )] }}} 으로 쓸 수 있을 것으로 기대되는데, 여기서 나온 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{p}_{r}=\frac{1}{\hat{r}}\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}} \end{aligned} )] }}} 으로 주어질 것이다. 하지만 이 연산자는 치명적인 문제가 있는데, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{p}_{r}^{\dagger}=\mathbf{\hat{p}}\boldsymbol{\cdot} \mathbf{\hat{r}}\frac{1}{\hat{r}} \neq \hat{p}_{r} \end{aligned} )] }}} 위에서 볼 수 있듯, 자기 수반이 아니다. 즉, 해당 연산자로 측정을 하면 얻기를 원하는 운동량의 지름 성분이 측정되지 않는다. 이 문제를 해결하기 위해서 각운동량 연산자의 제곱을 구하는 과정부터 다시 해보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}^{2} &=(\mathbf{\hat{r}} \times \mathbf{\hat{p}}) \boldsymbol{\cdot} (\mathbf{\hat{r}} \times \mathbf{\hat{p}}) \\&=(\varepsilon_{jkl}\hat{x}_{k}\hat{p}_{l})(\varepsilon_{jmn}\hat{x}_{m}\hat{p}_{n} ) \\&=(\varepsilon_{jkl}\hat{x}_{k}\hat{p}_{l})(\varepsilon_{jmn}\hat{x}_{m}\hat{p}_{n} ) \\&=\varepsilon_{jkl}\varepsilon_{jmn}\hat{x}_{k}\hat{p}_{l}\hat{x}_{m}\hat{p}_{n} \\&=(\delta_{km}\delta_{ln}-\delta_{kn}\delta_{lm})\hat{x}_{k}\hat{p}_{l}\hat{x}_{m}\hat{p}_{n} \\&=\hat{x}_{k}\hat{p}_{l}\hat{x}_{k}\hat{p}_{l}-\hat{x}_{k}\hat{p}_{l}\hat{x}_{l}\hat{p}_{k} \end{aligned} )] }}} 중요한 것은 위치 연산자와 운동량 연산자가 교환하지 않기 때문에 조금의 조작을 거쳐야 한다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{L}^{2}&=\hat{x}_{k}(\hat{x}_{k}\hat{p}_{l}-i\hbar \delta_{kl} )\hat{p}_{l}-(\hat{p}_{l}\hat{x}_{k}+i\hbar \delta_{kl})\hat{x}_{l}\hat{p}_{k} \\ &=\hat{x}_{k}\hat{x}_{k}\hat{p}_{l}\hat{p}_{l}-i\hbar \hat{x}_{k}\hat{p}_{k}-\hat{p}_{l}\hat{x}_{k}\hat{x}_{l}\hat{p}_{k}-i\hbar \hat{x}_{k}\hat{p}_{k} \\&=\hat{x}_{k}\hat{x}_{k}\hat{p}_{l}\hat{p}_{l}-\hat{p}_{l}\hat{x}_{k}\hat{x}_{l}\hat{p}_{k}-2i\hbar \hat{x}_{k}\hat{p}_{k} \\&=\hat{x}_{k}\hat{x}_{k}\hat{p}_{l}\hat{p}_{l}-\hat{p}_{l}\hat{x}_{l}\hat{x}_{k}\hat{p}_{k}-2i\hbar \hat{x}_{k}\hat{p}_{k} \\&=\hat{x}_{k}\hat{x}_{k}\hat{p}_{l}\hat{p}_{l}-(\hat{x}_{l}\hat{p}_{l}-i \hbar)\hat{x}_{k}\hat{p}_{k}-2i\hbar \hat{x}_{k}\hat{p}_{k} \\&=\hat{x}_{k}\hat{x}_{k}\hat{p}_{l}\hat{p}_{l}-\hat{x}_{l}\hat{p}_{l}\hat{x}_{k}\hat{p}_{k}+3i \hbar\hat{x}_{k}\hat{p}_{k}-2i\hbar \hat{x}_{k}\hat{p}_{k} \qquad \biggl( \because \sum_{k=1}^{3}\sum_{l=1}^{3} \hat{x}_{k}\hat{p}_{k} =3\sum_{k=1}^{3} \hat{x}_{k}\hat{p}_{k} \biggr) \\&=\hat{x}_{k}\hat{x}_{k}\hat{p}_{l}\hat{p}_{l}-\hat{x}_{l}\hat{p}_{l}\hat{x}_{k}\hat{p}_{k}+i \hbar\hat{x}_{k}\hat{p}_{k} \\ \\ \therefore \hat{L}^{2}&=\hat{r}^{2} \hat{p}^{2}-(\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}})^{2}+i\hbar (\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}}) \end{aligned} )] }}} 위에서 나온 각 항에 대하여 다음을 계산해보자. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \mathbf{r} |\hat{r}^{2} \hat{p}^{2}| f \rangle &= \langle \hat{r}^{2}\mathbf{r} | \hat{p}^{2}| f \rangle \\ &=r^{2}\langle \mathbf{r} | \hat{p}^{2}| f \rangle \\ &=-r^{2} \hbar^{2} \nabla^{2} \langle \mathbf{r} | f \rangle \\&=-r^{2} \hbar^{2} \nabla^{2} f(\mathbf{r}) \\ \\ \langle \mathbf{r} |(\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}})^{2}| f \rangle &= \biggl( \frac{\hbar}{i} \biggr)^{2} (\mathbf{r} \boldsymbol{\cdot} \boldsymbol{\nabla})(\mathbf{r} \boldsymbol{\cdot} \boldsymbol{\nabla}) \langle \mathbf{r} | f \rangle \\&=-\hbar^{2} r \frac{\partial}{\partial r}\biggl( r \frac{\partial}{\partial r} \biggr)\langle \mathbf{r} | f \rangle \\&=-\hbar^{2} r \frac{\partial}{\partial r}\biggl( r \frac{\partial f(\mathbf{r})}{\partial r} \biggr) \\&=-\hbar^{2}r \biggl(r\frac{\partial^{2} f(\mathbf{r})}{\partial r^{2}}+\frac{\partial f(\mathbf{r})}{\partial r} \biggr) \\ &=-\hbar^{2}r^{2} \biggl(\frac{\partial^{2} f(\mathbf{r})}{\partial r^{2}}+\frac{1}{r}\frac{\partial f(\mathbf{r})}{\partial r} \biggr) \\ \\ \langle \mathbf{r}|i\hbar (\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}}) | f \rangle&=\hbar^{2}(\mathbf{r} \boldsymbol{\cdot} \boldsymbol{\nabla}) \langle \mathbf{r} | f \rangle \\&=\hbar^{2} r^{2} \biggl(\frac{1}{r} \frac{\partial f(\mathbf{r})}{\partial r} \biggr) \end{aligned} )] }}} 이상에서 다음과 같은 결과를 얻는다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} -\langle \mathbf{r} |(\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}})^{2}| f \rangle+ \langle \mathbf{r}|i\hbar (\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}}) | f \rangle &= \hbar^{2} r^{2}\biggl(\frac{\partial^{2} f(\mathbf{r})}{\partial r^{2}}+\frac{2}{r}\frac{\partial f(\mathbf{r})}{\partial r} \biggr) \\&=\hbar^{2} r^{2} \cdot \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r f(\mathbf{r})) \\&= -r^{2} \cdot \frac{\hbar}{i} \frac{1}{r} \frac{\partial}{\partial r} r \cdot \frac{\hbar}{i} \frac{1}{r} \frac{\partial}{\partial r} rf(\mathbf{r}) \end{aligned} )] }}} 이때, 연산자 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal{P}}_{r}&=\frac{\hbar}{i}\frac{1}{r} \frac{\partial}{\partial r} r \\&=\frac{\hbar}{i}\biggl(\frac{1}{r}+\frac{\partial}{\partial r} \biggr) \end{aligned} )] }}} 로 정의하자. 이것의 의미는 후술하기로 한다. 위치 공간에서 각 연산자의 표현을 검토하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{p}_{r}&=\frac{1}{\hat{r}}\mathbf{\hat{r}} \boldsymbol{\cdot} \mathbf{\hat{p}} \\&=\frac{1}{r} \mathbf{r} \boldsymbol{\cdot} \biggl(\frac{\hbar}{i} \boldsymbol{\nabla} \biggr) \\&=\frac{\hbar}{i}\frac{1}{r} \cdot r \cdot \frac{\partial}{\partial r} \\&=\frac{\hbar}{i}\frac{\partial}{\partial r} \\ \\ \hat{p}_{r}^{\dagger}&=\mathbf{\hat{p}} \boldsymbol{\cdot} \mathbf{\hat{r}}\frac{1}{\hat{r}} \\&= \biggl(\frac{\hbar}{i} \boldsymbol{\nabla} \biggr)\boldsymbol{\cdot} \mathbf{r} \cdot \frac{1}{r} \\&=\frac{\hbar}{i} \cdot (\boldsymbol{\nabla}\boldsymbol{\cdot} \mathbf{r}) \cdot \frac{1}{r} \\&=\frac{\hbar}{i}\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \cdot r \cdot \frac{1}{r} \\&=\frac{\hbar}{i}\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \\&=\frac{\hbar}{i} \biggl( \frac{2}{r}+\frac{\partial}{\partial r} \biggr) \\ \\ \therefore \hat{p}_{r}+\hat{p}_{r}^{\dagger}&=2\cdot \frac{\hbar}{i} \biggl( \frac{1}{r}+\frac{\partial}{\partial r} \biggr) \quad \Rightarrow \quad \hat{\mathcal{P}}_{r}=\frac{1}{2} (\hat{p}_{r}+\hat{p}_{r}^{\dagger}) \end{aligned} )] }}} 를 얻는다. 이것이 양자역학적으로 표현된 지름 방향의 운동량(연산자)이다. 따라서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle \mathbf{r} |\hat{L}^{2} | f \rangle&={r}^{2} \langle \mathbf{r} |\hat{p}^{2} | f \rangle -r^{2}\langle \mathbf{r} |\hat{\mathcal{P}}_{r}^{2} | f \rangle \\ \langle \mathbf{r} |\hat{p}^{2} | f \rangle =& \langle \mathbf{r} |\hat{\mathcal{P}}_{r}^{2} | f \rangle +\frac{1}{r^{2}}\langle \mathbf{r} |\hat{L}^{2} | f \rangle \\ \langle \mathbf{r} |\hat{p}^{2} | f \rangle =& \langle \mathbf{r} |\hat{\mathcal{P}}_{r}^{2} | f \rangle +\biggl\langle \frac{1}{\hat{r}^{2}} \mathbf{r} \biggl|\hat{L}^{2} \biggr| f \biggr\rangle \\ \\ \therefore \langle \mathbf{r} |\hat{p}^{2} | f \rangle =& \langle \mathbf{r} |\hat{\mathcal{P}}_{r}^{2} | f \rangle +\biggl\langle \mathbf{r} \biggl| \frac{1}{\hat{r}^{2}} \hat{L}^{2} \biggr| f \biggr\rangle \end{aligned} )] }}} 이상에서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{p}^{2}=\hat{\mathcal{P}}_{r}^{2}+\frac{1}{\hat{r}^{2}}\hat{L}^{2} \end{aligned} )] }}} 그런데 위치 표현에서는 일반적으로 [math(\hat{L}(\theta,\,\phi))]이고, [math(\hat{r}^{-2}(r)=r^{-2})]이므로 다음과 같이 써도 무관하다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{p}^{2}=\hat{\mathcal{P}}_{r}^{2}+\frac{\hat{L}^{2}}{{r}^{2}} \end{aligned} )] }}} 양자역학에서도 고전역학과 비슷하게 위치 표현에서 해밀토니언 연산자를 다음과 같이 쓸 수 있음을 얻는다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal{H}}=\frac{\hat{\mathcal{P}}_{r}^{2}}{2m}+\frac{\hat{L}^{2}}{2mr^{2}}+\hat{V} \end{aligned} )] }}} ==== 자유입자 ==== 자유입자의 경우 [math(\hat{V}=0)]이므로 해밀토니언 연산자는 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal{H}}=\frac{\hat{\mathcal{P}}_{r}^{2}}{2m}+\frac{\hat{L}^{2}}{2mr^{2}} \end{aligned} )] }}} 이미 자유입자에 대하여 다음을 증명한 바 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{\mathcal{H}},\,\hat{L}^{2}]=[\hat{\mathcal{H}},\,\hat{L}_{z}]=0 \end{aligned} )] }}} 따라서 해밀토니언 연산자에 대한 고유함수는 각운동량 제곱 연산자와 공유하고, 이것은 또 한 축의 각운동량 성분에 대한 연산자와 공유한다. 이에 해밀토니언 연산자에 대한 고유함수를 다음 꼴로 쓸 수 있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \varphi(r,\,\theta,\,\phi)=R(r)Y_{l}^{m}(\theta,\,\phi) \end{aligned} )] }}} 이것을 이용하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal{H}}\varphi(r,\,\theta,\,\phi)&=\frac{1}{2m} \biggl[ \hat{\mathcal{P}}_{r}^{2}R(r)Y_{l}^{m}(\theta,\,\phi)+\frac{\hat{L}^{2}}{r^{2}}R(r)Y_{l}^{m}(\theta,\,\phi)\biggr] \\ &=\frac{1}{2m} \biggl[ Y_{l}^{m}(\theta,\,\phi)\hat{\mathcal{P}}_{r}^{2}R(r)+\frac{R(r)}{r^{2}}\hbar^{2}l(l+1) Y_{l}^{m}(\theta,\,\phi) \biggr] \\&=E \varphi(r,\,\theta,\,\phi) \end{aligned} )] }}} 정리하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rR(r))-l(l+1)\frac{R(r)}{r^{2}}&=-\frac{2mE}{\hbar^{2}}R(r) \\ \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rR(r))-\biggl[\frac{l(l+1)}{r^{2}}-k^{2} \biggr]R(r) &=0 \qquad \biggl(\frac{2mE}{\hbar^{2}} \equiv k^{2} \biggr) \\ r^{2}\frac{\partial^{2}R(r)}{\partial r^{2}}+2r\frac{\partial R(r)}{\partial r}+[r^{2}k^{2}-l(l+1) ]R(r)&=0 \\ x^{2}\frac{\partial^{2}R(x)}{\partial x^{2}}+2x\frac{\partial R(x)}{\partial x}+[x^{2}-l(l+1) ]R(x)&=0 \end{aligned} )] }}} 이것은 [[베셀 함수#s-4.3|구면 베셀 방정식]]이고, 제2종 구면 베셀 함수는 [math(x\to 0)]에서 발산하는 문제가 있기에 제1종 구면 베셀 함수만 그 해로 택하여 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \varphi(r,\,\theta,\,\phi)=| l,\,k,\,m \rangle=j_{l}(kr)Y_{l}^{m}(\theta,\,\phi) \end{aligned} )] }}} 수학적으로 다음과 같음이 알려져있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \langle l,\,k,\,m| l',\,k',\,m' \rangle=\frac{\pi}{2k^{2}}\delta_{ll'}\delta_{mm'}\delta(k-k') \end{aligned} )] }}} 직교 좌표계에서 자유입자의 고유함수를 구하면 아래와 같음이 알려져있다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \psi=\frac{1}{(2\pi)^{3/2}} e^{i \mathbf{k} \boldsymbol{\cdot} \mathbf{r}} \end{aligned} )] }}} 이 상태에서 운동량과 해밀토니언을 측정하면 각각 [math(\mathbf{p}=\hbar \mathbf{k})], [math(\mathcal{H}=\hbar^{2} k^{2}/2m)]을 준다. 만일 [math(\mathbf{k}=k \mathbf{e}_{r}+\alpha \mathbf{e}_{\theta}+\beta \mathbf{e}_{\phi})]일 때, 위 상태에서 각운동량과 관계된 물리량을 측정하면 어떠한 상태가 되는가? 이것은 위의 상태는 선운동량과 해밀토니언에 대하여 결정된 상태임을 이해하면 쉽게 결론을 내릴 수 있다. 이것을 각운동량과 해밀토니언의 고유함수들로 중첩된 상태 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} e^{i \mathbf{k} \boldsymbol{\cdot} \mathbf{r}}=4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{l}i^{l} Y_{l}^{m\ast}(\alpha,\,\beta) | l,\,k,\,m \rangle \end{aligned} )] }}} 으로 생각하면 그 답이 나온다. ==== [[중심력|중심력장]]에 구속된 입자 ==== 앞서 나온 과정 처럼 운동 에너지 연산자와 각운동량 연산자는 서로 교환한다. 즉, {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{T},\,\hat{L}_{z}]=[\hat{T},\,\hat{L}^{2}]=0 \end{aligned} )] }}} 중심력장의 경우 [math(\hat{V}=V(r))]이 성립한다. 그렇다면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{\mathcal{H}},\,\hat{L}^{2}]=[\hat{T},\,\hat{L}^{2}]+[\hat{V},\,\hat{L}^{2}] \end{aligned} )] }}} 인데, 위치 표현에서 [math(\hat{L}^{2}(\theta,\,\phi))]이므로 우변의 제 2항 또한 0이다. 이는 [math(\hat{L}_{z})]일 때도 마찬가지로 성립한다. 즉, 중심력장 또한 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} [\hat{\mathcal{H}},\,\hat{L}_{z}]=[\hat{\mathcal{H}},\,\hat{L}^{2}]=0 \end{aligned} )] }}} 이므로 [math(\{ \hat{\mathcal{H}},\,\hat{L}^{2},\,\hat{L}_{z} \})]는 서로 교환하는 연산자의 집합이다. 이 계의 고유함수는 위 점을 고려하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \varphi(r,\,\theta,\,\phi)=R(r)Y_{l}^{m}(\theta,\,\phi) \end{aligned} )] }}} 로 나타낼 수 있다. (규격화 상수는 무시하도록 하겠다.) 구면좌표계에서 해밀토니언 연산자는 앞서 조사한 것과 같이 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \hat{\mathcal{H}}=\frac{\hat{\mathcal{P}}_{r}^{2}}{2m}+\frac{\hat{L}^{2}}{2mr^{2}}+V(r) \end{aligned} )] }}} 고유함수를 대입하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} \frac{\hbar^{2}}{2m}\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rR(r))-\frac{\hbar^{2}l(l+1)}{2mr^{2}}R(r)-V(r)R(r)&=-ER(r) \\ \frac{\hbar^{2}}{2m}\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rR(r))-\left[\frac{\hbar^{2}l(l+1)}{2mr^{2}}+V(r) \right]R(r)&=-ER(r) \end{aligned} )] }}} 위 식이 중심력장에 대한 지름 방향의 파동 방정식이다. 여기서 나온 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} V_{\sf{eff}}(r)=\frac{\hbar^{2}l(l+1)}{2mr^{2}}+V(r) \end{aligned} )] }}} 을 유효 퍼텐셜(effective potential)로 정의한다. 여기서 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \begin{aligned} V(r)=-\frac{1}{4\pi \varepsilon_{0}}\frac{Ze^{2}}{r} \end{aligned} )] }}} 로 놓은 것이 수소형 원자의 경우이다. 자세한 내용은 [[수소 원자 모형]] 문서를 참조한다. === 지름 파동 함수와 지름 확률 밀도 함수 === 위 논의에서 자유입자이거나 중심력장에 구속된 입자에 대한 지름 파동 방정식은 {{{#!wiki style="text-align: center" [br] [math(\displaystyle -\frac{\hbar^{2}}{2m}\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} (rR(r))+V_{\sf{eff}}(r)R(r)=ER(r) )] }}} 으로 구할 수 있고, 입자를 기술하는 파동함수는 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \varphi(r,\,\theta,\,\phi)= R(r) Y_{l}^{m_{l}}(\theta,\,\phi) )] }}} 형태였다. 따라서 입자를 구면 좌표계의 미소 부피에서 발견할 확률은 다음과 같이 구할 수 있을 것이다. {{{#!wiki style="text-align: center" [br] [math(\displaystyle P(r,\,\theta,\,\phi)\,{\rm d}V=\varphi^{\ast}(r,\,\theta,\,\phi)\varphi(r,\,\theta,\,\phi)\,r^{2}\,{\rm dr} {\rm d}\Omega )] }}} 규격화는 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \int_{0}^{\infty} |R(r)|^{2} \,r^{2}{\rm d}r\oint_{\Omega} Y_{l}^{m_{l}\ast}(\theta,\,\phi)Y_{l}^{m_{l}}(\theta,\,\phi)\,{\rm d}\Omega=1 )] }}} 인데, 구면 조화 함수는 모든 입체각에 대한 적분이 1이다. 즉 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \int_{0}^{\infty} |R(r)|^{2} \,r^{2}{\rm d}r=1 )] }}} 인데, 이것이 '''지름 파동 함수에 대한 규격화 조건'''이다. 이것을 다시 쓰면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle \int_{0}^{\infty} |rR(r)|^{2} {\rm d}r=1 )] }}} 즉, 입자를 [math(r)]과 [math(r+{\rm d}r)] 사이의 구각에서 발견할 확률 [math(P(r)\,{\rm d}r = |rR(r)|^{2}\, {\rm d}r)]이다. '''즉, 직각 좌표계처럼 파동함수의 제곱이 확률 밀도 함수가 되지 않고, 가중 함수가 붙어야 확률 밀도 함수가 된다.''' 참고로 [math(u(r) \equiv rR(r))]로 정의하여 지름 파동 방정식에 대입하면 {{{#!wiki style="text-align: center" [br] [math(\displaystyle -\frac{\hbar^{2}}{2m}\frac{\partial^{2}u(r)}{\partial r^{2}} +V_{\sf{eff}}(r)u(r)=Eu(r) )] }}} 1차원 시간에 무관한 슈뢰딩거 방정식과 같은 꼴이 나오게 된다. == [[스핀(물리학)|스핀 각운동량]] == [include(틀:상세 내용, 문서명=스핀(물리학))] == 관련 문서 == * [[양자역학]] * [[연산자]] * [[운동량 연산자]] * [[수소 원자 모형]] [각주] [include(틀:문서 가져옴, title=운동량, version=66, title2=각운동량, version2=205, paragraph2=4,title3=각운동량 연산자/심화, version3=34)] [[분류:물리량]][[분류:양자역학]]