[include(틀:수학기초론)] [목차] == 개요 == Schröder–Bernstein theorem 두 집합 A, B의 [[초한기수|원소의 개수]]를 비교할 때, A의 원소수가 B의 원소수보다 작거나 같고, 또한 반대로 B의 원소수가 A의 원소수보다 작거나 같다면, 두 집합의 원소의 수가 같다는 정리이다. 유한집합에서는 자명한 사실이지만, 무한집합에서도 이러한 사실이 성립한다는 내용을 담고 있다. == 진술 == 임의의 집합 [math( A, B )]에 대하여, 함수 [math(f: A \to B )]와 [math(g: B \to A )]가 모두 단사함수라면 [[전단사함수]] [math( h: A \to B )]가 존재한다. 이를 다시쓰면, [math( \left| A \right| \leq \left| B \right|, \left| B \right| \leq \left| A \right| \Rightarrow \left| A \right| = \left| B \right| )] 가 성립한다. == 증명 == 단사함수 [math(f: A \to B )]와 [math(g: B \to A )]가 있을 때, 집합열 [math( \left(C_n \right))]을 다음과 같이 정의한다. [math( \begin{aligned} C_0 &= A \setminus g\left(B\right) \\ C_{n+1} &= g\left(f\left(C_n\right)\right) \end{aligned} )] 그리고, [math(\displaystyle C = \bigcup_{n=0}^{\infty} C_n)]이라 할 때, 함수 [math( h: A \to B )]를 다음과 같이 정의한다. [math(h \left(x \right) = \begin{cases} f\left(x\right) & x\in C \\ g^{-1}\left(x\right) & x \in A\setminus C \end{cases})] 그러면 [math( h )]는 전단사함수가 된다. 먼저, 단사함수가 되는 것을 보인다. [math(x_1, x_2 \in A )]가 있다고 하자[math( \left(x_1 \neq x_2\right) )]. [math( f, g^{-1} )]는 각각 정의된 영역에서 단사이므로 [math(x_1 \in C, x_2 \in A\setminus C )]인 경우만 살피면 충분하다. [math(x_1 \in C)]이므로, [math(x_1 \in C_n)]인 n이 존재한다. 따라서 [math( \left(C_n \right))]의 정의로부터 [math(g\left(f\left(x_1\right)\right) \in C_{n+1} )]이 성립하고, [math( g^{-1}\left(x_2\right) \in B\setminus g^{-1}\left(C\right))]이므로 [math( f\left(x_1\right)\neq g^{-1}\left(x_2\right) )]이다. 즉, [math( h\left(x_1\right)\neq h\left(x_2\right) )] 다음으로, 전사함수가 됨을 보인다. 임의로 [math(y \in B )]를 택했을 때, [math(y \in f\left(C\right) )]라면 당연히 [math(y \in h\left(A\right) )]이다. 만약 [math(y \notin f\left(C\right) )]이라면 [math(g)]가 단사이므로 [math(\displaystyle g\left(y\right) \notin g\left(f\left(C\right)\right) = \bigcup_{n=0}^{\infty} g\left(f\left(C_n \right)\right) = \bigcup_{n=1}^{\infty} C_n )] 이다. 또한 정의에 의해 [math(g\left(y\right) \notin C_0 )]이다. 따라서 [math(g\left(y\right) \notin C )]이고, 이는 [math(g\left(y\right) \in A\setminus C )]라는 뜻이다. 따라서 [math(y \in h\left(A\right) )]이다. [[분류:집합론]]