[include(틀:해석학·미적분학)] {{{+1 smoothness}}} [목차] == [[해석학(수학)|해석학]]에서의 매끄러움 == 무한히 미분해도 계속 [[연속함수|연속]]인 함수의 성질을 '함수의 매끄러움'이라고 한다. 예를 들자면 [[삼각함수]] [math(\sin x)]은 미분하면 [math( \cos x )]이 되고, 다시 미분하면 [math(-\sin x)]이 되고... 가 계속 반복되는데, 이들은 모두 연속이기 때문에 매끄럽다고 할 수 있다. [[다항함수]]는 (차수+1)만큼 미분하고 나면 [math(0)]이 되는데, 일종의 상수함수로 생각할 수 있고, 상수함수는 연속이기 때문에 다항함수는 모두 매끄럽다. 지수함수나 로그함수도 물론 매끄럽다. 연속인 함수의 합성함수가 연속이므로 초등함수는 모두 매끄럽다. [[대칭함수|홀함수와 짝함수]]는 홀짝을 반복하는 형태로 매끄러운 함수이다.[* 물론 원래 함수가 매끄럽다는 가정 하에.] 미분이 몇 번 되는가를 기준으로 함수를 분류하기도 하는데, [math(C^{\infty})]이 매끄러운 함수들의 집합을 의미하며, [math(C^{k})]는 k-계도함수가 연속함수로 존재하는 함수들의 집합이다. [math(C^0)]은 연속인 함수의 집합이다. 한편 '''해석함수'''(analytic function)라는 함수의 클래스가 있는데, 이는 모든 점에 대해 그 점 근방에서 [[테일러 급수]]가 원래 함수로 수렴하는 함수들의 모임이다. 해석함수의 집합을 [math(C^{\omega})]라 쓰기도 한다. 이 다른 이름이 있는 이유는, [[병리적 함수|매끄럽지만 해석함수가 아닌 함수]]가 있기 때문이다. 다음의 [[조각적 정의]]된 함수가 자주 나오는 예시이다. [math( f(x) = \begin{cases} e^{-1/x} & x > 0 \\ 0 & x \le 0 \end{cases})] 이 함수 [math(f)]는 [math(x=0)]에서 무한 번 미분할 수 있고 모든 미분계수가 0이다. 즉 매끄러운 함수이지만 [math(x=0)]에서의 테일러 급수는 0이므로 0점의 어떤 근방에서도 [math(f)]와 일치하지 않아 해석함수가 될 수 없다. --아무리 [[실해석학]]이 반례의 천국이라도 매끄러운 함수마저 이런 뒤통수를 치다니-- 대신 복소수에서 복소수로 가는 열린 집합 위의 복소함수에 대해서는 [math(C^1)] = [math(C^{\infty})] = [math(C^{\omega})]이 성립한다. 실수에서의 미분 가능보다 복소수에서 미분 가능이 훨씬 까다로운 조건이기 때문. 교재에서 한 번 미분했을 때 연속인 함수인 경우 매끄럽다고 표현한다면 정의역을 한 번 살펴보자. 덕분에 축복 받은 [[복소해석학]]에서는 매끄러움이란 말을 쓰지 않고 한 번 미분 가능하면 그냥 복소해석적(complex analytic)이라 부르고 끝내버린다. 물론 실수 등 정의역이 열린 집합이 아니면 전혀 성립하지 않는다. 다변수 미적분학에서는 비슷하게 모든 방향의 편도함수가 계속 [[연속함수|연속]]이면 된다. 해석함수도 비슷하게 정의할 수 있고, 역시 위의 예시처럼 매끄럽지만 해석함수가 아닌 함수도 있다. 위의 예시는 일부 구간에서 0이고 다른 구간에서 1인 매끄러운 함수 등을 마음대로 만들 수 있기 때문에 은근히 유용하게 쓰인다. == [[기하학]]에서 도형의 매끄러움 == 어찌 보면 모양이 모난 데 없이 매끄럽다는 일상적인 의미에 보다 가깝지만, 이걸 엄밀히 전달하기 위해선 함수의 매끄러움이 필요하다. 간단히 얘기하면 매끄러운 함수로 도형을 나타낼 수 있고, 접평면을 생각할 수 있을 때 매끄럽다고 한다. 물론 세부적인 정의는 문맥과 상황에 따라 많이 다르다. 유클리드 공간 내부의 [[곡선]]의 경우 __길이에 대해__ 매개화했을 때 그 함수가 매끄러우면 그 곡선도 매끄럽다고 한다. 이렇게 정의하는 이유는 [[절댓값]] 함수 [math(y=|x|)]의 그래프 같이 전혀 매끄럽지 않아 보이는 뾰족한 모양이라도 함수 자체는 매끄럽게 매개화할 수 있기 때문이다.[* 구체적인 예시를 들자면 위의 매끄럽지만 해석이 아닌 함수 예시 [math(f)]를 사용하여, [math(\gamma(t) = \begin{cases} (f(t),f(t)) & t \ge 0 \\ (-f(-t),f(-t)) & t \le 0 \end{cases})]처럼 정의하면 [math(\gamma)]의 궤적은 절대값 그래프를 그린다.][* 실제로 절댓값의 미적분을 살펴본다면[br]미분: [math(|x| \to \mathrm{sgn}(x) \to 2\delta(x) \to 2\delta'(x) \cdots)][br]적분: [math(|x| \to \dfrac{x^2}{2}\mathrm{sgn}(x) \to \dfrac{x^3}{6}\mathrm{sgn}(x) \to \dfrac{x^4}{24}\mathrm{sgn}(x)\cdots)][br]같은 식으로 무한번 미분이나 적분이 가능한 것을 알 수 있다. 이게 가능한 이유는 분포 이론을 통한 [[디랙 델타 함수]] 정의의 수학적 토대를 마련한 [[로랑 슈바르츠]]의 공이 크다.] 다만 이 정의는 곡선을 제외한 다른 매개화된 도형으로 옮겨가기가 힘들다. 대신 국소적으로 유클리드 공간의 매끄러운 일대일대응이 양쪽 방향으로 있을 때, 즉 미분동형(diffeomorphic)의 조건으로 더 높은 차원의 매끄러움을 정의할 수 있다. 도형 [math(M)]의 점 [math(p)]에 대해, 근방 [math(p \in U \subset M)]이 존재해 열린 집합 [math(V \subset \mathbb{R}^n)]과의 일대일대응 [math(f : U \rightarrow V)]이 있어 [math(f, f^{-1})]이 모두 매끄러운 함수이면 [math(M)]은 점 [math(p)]에서 매끄럽다고 말한다. [[역함수 정리]]에 의해 도형의 매개화에서 미분이 일대일함수이기만 한다면 그 역함수도 매끄러운 함수가 되므로, 매끄러움을 판정하기는 생각보다 쉽다. 길이로 매개화하면 그 미분은 길이 1짜리 속도벡터가 되므로, 곡선에 대해서는 두 매끄러움의 정의가 동치라는 사실도 증명할 수 있다. 보다 고급 과정에서는 이것의 일반화된 버전인 매끄러운 다양체(smooth manifold) 혹은 [[미분다양체]]를 생각한다. 미분다양체에서 매끄러움의 정확한 정의는 의외로 매우 귀찮지만, 유클리드 공간에 있지 않은 공간에서 매끄러움을 논하려면 어쩔 수 없이 이 버전이 필요하다. 기타 [[대수기하학]] 등 분야마다 조금씩 다른 매끄러움의 정의가 있다. 도형이 매끄럽지 않은 점을 [[특이점]](singularity)이라고 한다. [[분류:해석학(수학)]][[분류:기하학]]