[include(틀:정수론)] [목차] == 개요 == {{{+1 [[倍]][[數]] / Multiple}}} 어떤 [[정수]]의 ‘정수 배’가 되는 정수.[* [[유리수]]부터는 [math(0)]을 제외한 모든 수가 배수가 된다.] 예를 들어, [math(4)]는 [math(2)]의 두 배이므로 [math(4)]는 [math(2)]의 배수가 된다. 수학적인 정의는 다음과 같다. 기초적인 것은 5학년 올라와서 배우지만, 중학교 입학하게 되면 더 심화된 내용으로 나온다. ||정수 [math(a)]가 정수 [math(b)]의 배수가 된다는 것은 어떤 정수 [math(k)]가 존재하여 [math(a = kb)]가 성립함을 의미한다. || 따라서 배수는 음수에 대하여도 정의된다.[* 단, 중·고등학교 교육과정에서는 양의 정수로 한정하고 있다.] 예를 들면, [math(-6)]은 [math(3)]에 [math(-2)]를 곱한 것이므로 [math(-6)]은 [math(3)]의 배수이다. [math(0)]은 [math(3)]에 [math(0)]을 곱한 것이므로 [math(0)]도 [math(3)]의 배수가 된다. 그리고 원래 [math(0)]은 모든 정수의 배수이다. 왜냐하면 임의의 정수 [math(b)]에 대하여 [math(b * 0 = 0)]이기 때문이다. 따라서 [math(0)]의 배수는 정의되지 않는다. 정수 [math(a)]가 정수 [math(b)]의 배수이면 [math(b)]는 [math(a)]의 [[약수(수학)|약수]]이다. 두 개의 정수 [math(a)]와 [math(b)]에 대해서, [math(a)]가 [math(b)]의 배수이면, [math(b)]|[math(a)]로 표기한다. == 배수 판별법 == [include(틀:토론 합의, this=문단, 토론주소1=HospitablePeriodicGrotesqueRifle, 합의사항1=소수의 거듭제곱이 아닌 합성수의 판별법은 특별한 방법(두 수 이상의 공배수임을 이용하는 것 이외의 방법)이 없는 한 서술하지 않기\, 6의 배수 판별법만 예외적으로 존치하기)] 어떤 자연수의 배수들은 공통된 성질을 띄는 경우가 있다. 이것을 이용하여 직접 나누기에는 큰 정수가 어떤 자연수의 배수인지 아닌지를 쉽게 판별할 수 있다. '''정수 0은 모든 정수의 배수'''기도 하고 '''적용되지 않는 경우도 있기''' 때문에, 아래의 방법에서 제외한다. 두 자리 이상의 합성수 배수(2의 거듭제곱수, 10 제외)에는 굵은 글씨로 표기하였다. 다음 제공되는 수를 약수로 가지면서 동일한 방법을 적용할 수 있는 경우는 작성하지 않았다. 어떤 수가 합성수의 배수인지 아닌지 판정하려면 해당 수의 [[약수(수학)#s-4|유니타리 약수]][* 해당 수의 약수로 나눈 몫이, 그 약수와 서로소일 때에 부르는 이름이다. 자세한 내용은 항목 참고.]의 배수 판정법들을 이용하면 된다. 예를 들어 84의 경우는 2^2(=4), 3, 그리고 7의 공배수임을 이용하면 된다. ---- 끝 자리와 관련된 판별법 * 1의 배수 : '''모든 자연수(정수).''' 1은 곱셈의 항등원이다. * 2의 배수 : '일의 자리'가 0 또는 2의 배수(2, 4, 6, 8), 즉 짝수인 수. * 2의 거듭 제곱(n = 2^m = 2, 4, 8, 16, ...) 배수 : 끝 m자리가 n의 배수인 수. * {{{#!folding 2의 거듭 제곱의 배수 (다른 판별법) [ 펼치기 · 접기 ] (n = 2^m = 2, 4, 8, 16, 32, 64, 128...) 배수 * 4의 배수 : 십의 자리와 일의 자리가 모두 0인 수, 십의 자리가 홀수면 일의 자리가 2 또는 6, 십의 자리가 짝수면 일의 자리가 0, 4, 또는 8인 수.[* 달력에서 [[윤년]] 판별도 이것을 가지고 한다. 여기에 해당되는 해는 일부 예외를 제외하고는 [[2월 29일]]이 있다.] * 8의 배수 : 십의 자리를 2배한 수를 a라고 놓고 그 a에 일의 자리를 더한 수를 b라고 놓는다. 만약 백의 자리가 홀수이면 b가 4의 배수이되 8의 배수는 아닐 경우, 백의 자리가 없거나 짝수이면 b가 0이거나 8의 배수일 경우 8의 배수다.[* 예를 들어 64는 십의 자리를 2배하면 6×2=12이고 여기에 4를 더하면 16인데 백의 자리가 없고 16이 8의 배수이므로 64는 8의 배수다. 또, 768은 십의 자리를 2배해서 일의 자리를 더하면 6×2+8=20인데 백의 자리(7)가 홀수이고 20이 4의 배수이되 8의 배수가 아니므로 768은 8의 배수다.] 더 간단히 판별하자면, 백의 자리가 없거나 짝수이면 끝의 두 자리(십의 자리와 일의 자리)가 8의 배수일 경우, 백의 자리가 홀수이면 끝의 두 자리만 취한 값에서 4를 더한 값이 8의 배수일 경우 8의 배수다. * 16의 배수 : 우선 끝의 두 자리만 취한 값을 a로 놓는다. 그리고 끝의 네 자리 중 앞의 두 자리(천의 자리와 백의 자리)를 b로 놓고 b를 4로 나눈 다음 그 나머지에 4를 곱해서 a에 더해 본다. 그 결과 a가 0이거나 16의 배수이면 그 수는 16의 배수다.[* 예: 이 방법으로 65536이 16의 배수인지 확인한다면 a는 끝의 두 자리인 36으로 b는 끝의 네 자리 중 앞의 두 자리인 55로 놓는다. 55를 4로 나눈 나머지는 3이므로 그 3에 4를 곱한 12를 a에 더하면 36+12=48. 그리고 48은 16의 배수이므로 65536은 16의 배수임을 알 수 있게 된다. (65536÷16=4096)] 다른 방법으로는, 천의 자리와 백의 자리를 떼어낸 후 4를 곱하고 나서 십의 자리와 일의 자리를 더한다. 예를 들어 abcde가 있다면 bc×4+de=16×k. * 32의 배수 : 만의 자리와 천의 자리와 백의 자리를 떼어낸 후 4를 곱하고 나서 십의 자리와 일의 자리를 더한다. 예를 들어 abcde가 있다면 4(abc)+de=32k. * 64의 배수 : 십만의 자리와 만의 자리와 천의 자리와 백의 자리를 떼어낸 후 4를 곱하고 나서 십의 자리와 일의 자리를 더한다. 예를 들어 abcdef가 있다면 4(abcd)+ef=64k. }}} * 5의 배수 : '일의 자리'가 5 또는 0인 수. * 5의 거듭 제곱(n = 5^m = 5, 25, 125, ...) 배수 : 끝 m자리가 n의 배수인 수. * 10의 배수 : 두 자리 이상이면서 '일의 자리'가 0인 수[* 이래서인지 10의 배수가 제일 간단하다, 다르게 보자면, 5의 배수 중 짝수인 수, 즉 2와 5의 공배수다.] * 10의 거듭 제곱(n = 10^m = 10, 100, 1 000, ...) 배수 : 끝 m자리가 모두 0인 수. ---- 자릿수 각각의 합/차와 관련된 판별법 * 3의 배수 : 각 자릿수의 합이 3의 배수인 수.[* 예를 들어 [[825]]는 각 자릿수의 합이 8+2+5=15이고, 15가 3의 배수이므로 825는 3의 배수다. 그러나 [[961]]은 각 자릿수의 합이 9+6+1=16이고, 16이 3의 배수가 아니므로 961은 3의 배수가 아니다.] 나온 수로도 짐작이 안 될 경우엔 반복하면 된다. 더 쉽게 판별하려면, 먼저 0, 3, 6, 9를 지운 뒤에 남은 자릿수를 3의 배수가 되도록 묶는다. * 9의 배수 : (3의 배수 중) 각 자릿수의 합이 9의 배수인 수.[* 예를 들어 [[765]]는 각 자릿수의 합이 7+6+5=18이고, 18이 9의 배수이므로 765는 9의 배수다. 그러나 [[573]]은 각 자릿수의 합이 5+7+3=15이고, 15가 9의 배수가 아니므로 573은 9의 배수가 아니다.] 한자리 수가 나올 때까지 반복 작업할 경우 최종적으로 9가 나오는 수. * 11의 배수 : 짝수 자리(십, 천, 십만, 천만, ...)의 숫자들의 합과 홀수 자리(일, 백, 만, 백만, 억, ...)의 숫자들의 합의 차가 11의 배수인 수.[* 9581=11×871, (9+8)-(5+1)=11][* 참고로 이것은 짝수 자릿수를 가진 [[대칭수]]가 모두 11의 배수인 이유인 동시에 짝수 자릿수를 갖는 회문 소수는 11이 유일한 이유이기도 하다.] 다른 방법으로는 일의 자리를 제외한 뒤 남은 숫자에 본래의 수의 일의 자리를 빼서 11의 배수로 나오는 수도 있다.[* 예를 들어 165는 16-5=11, 253은 25-3=22 등][* 큰 수의 경우 3의 배수처럼 계속 반복해도 되는데, 일의 자리를 빼서 나온 수가 11의 배수라면 그 수 역시 다시 일의 자리수를 뺀 값이 11의 배수가 되어야 하기 때문이다. 11^6=1771561의 경우 177156-1=177155. 다시 17715-5=17710. 17710은 그대로 1771. 177-1 = 176이고 17-6=11 식이다.] ---- * 6의 배수 : 각 자릿수의 합이 3의 배수인 수 중 짝수인 수. 즉 2와 3의 공배수.[* 예를 들어 [[876]]은 각 자릿수의 합이 8+7+6=21인 3의 배수이면서 짝수이므로 876은 6의 배수다. 그러나 [[315]]는 각 자릿수의 합은 3+1+5=9인 3의 배수이지만 홀수이므로 6의 배수가 아니다. 또한 [[346]]은 짝수이지만 각 자릿수의 합이 3+4+6=13으로 3의 배수가 아니므로 346은 6의 배수가 아니다.] 이러한 서로소인 두 수 이상의 곱으로 나타낼 수 있는 수는 해당 수의 유니타리 약수의 공배수임을 이용하면 된다. ---- * 7의 배수 : 일의 자리의 숫자를 제외한 뒤, 이 제외된 숫자를 2배하여 남은 숫자에서 뺀다.[* 이 방법은 '스펜스의 방법'이라고도 불린다.] 예를 들어 abcde가 있다면 abcd-2e=7k[* k는 임의의 수로 정해지지 않은 불특정 수이다.]. 쉽게 설명하자면 임의의 수 a가 7의 배수인지를 판별하고자 할 때 a를 10으로 나눈 값을 b라고 놓고 그 나머지를 c라고 놓는다면 b에서 c를 2배한 값을 뺐을 때 그 값이 0이거나 7의 배수면 a는 7의 배수가 된다.[* 1001로 예시를 든다면 1001 → 100-(1×2) = 98 = 7×14] 이 숫자로도 짐작이 안 간다면 이를 반복, 그 결과가 7의 배수면 여태 거쳐온 숫자들도 전부 7의 배수다. 다른 방법으로는 일의 자리부터 세 자리 씩 나눠 묶은 뒤 교대로 빼고 더한 값이 7의 배수이면 본래의 수도 7의 배수다(네 자리 수 이상인 경우에만).[* 이 방법은 7이 1001의 약수임을 이용한 것으로 1001 및 1001의 다른 약수인 11, 13, 77, 91, 143에도 그대로 적용할 수 있다.] 자세한 설명은 이 문단 끝에 있는 링크를 들어가서 확인하자. 사실상 너무 어렵기 때문에 직접 나눠보는게 더 빠르다. * 13의 배수 : 7의 배수판정법과 반대이다. 일의 자리 숫자를 제외한 뒤에 이 일의 자리 숫자를 4배하여 남은 숫자에 더한다. 예를 들어 abcde가 있다면 abcd+4e=13k. 역시 얼마든지 반복할 수 있다. 다른 방법으로는 일의 자리부터 세 자리 씩 나눠 묶은 뒤 교대로 빼고 더한 값이 13의 배수이면 본래의 수도 13의 배수다(네 자리 수 이상인 경우에만). * 17의 배수 : 7의 배수판정법과 비슷하게, 일의 자리 숫자를 제외한 뒤에 이 제외된 숫자를 5배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-5e=17k. 역시 얼마든지 반복할 수 있다. * 19의 배수 : 7의 배수판정법과 반대이다. 일의 자리 숫자를 제외한 후, 이 제외된 숫자를 2배하여 남은 숫자에 더한다. 예를 들어 abcde가 있다면 abcd+2e=19k. 역시 얼마든지 반복할 수 있다. * '''21의 배수''' : 7의 배수판정법과 동일하게 일의 자리의 숫자를 제외한 뒤, 이 제외된 숫자를 2배하여 남은 숫자에서 빼고, 각 자릿수를 더했을시, 3의 배수가 되면 그 수도 21의 배수이다. * 23의 배수 : 7의 배수판정법과 반대이다. 일의 자리 숫자를 제외한 후, 이 제외된 숫자를 3배하여 남은 숫자의 2배를 뺀다. 예를 들어 abcde가 있다면 3(abcd)-2e=23k. 역시 얼마든지 반복할 수 있다. 다른 방법으로는 일의 자리 숫자를 제외한, 후 이 제외된 숫자에서 일의 자리 숫자의 7배를 더한다. 예를 들어 abcde가 있다면 abcd+7e=23k. 얼마든지 반복할 수 있다. * '''27의 배수''' : 9의 배수의 확장 버전. 4자리 이상일 경우 일의 자리에서부터 수를 세 자리씩 나눠 묶은 후 이들을 더한 값이 27의 배수이면 된다. 다른 방법으로는 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 8배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-8e=27k. 역시 얼마든지 반복할 수 있다. * 29의 배수 : 7의 배수판정법과 반대이다. 일의 자리 숫자를 제외한 후, 이 제외된 숫자를 3배하여 남은 숫자에 더한다. 예를 들어 abcde가 있다면 abcd+3e=29k. 역시 얼마든지 반복할 수 있다. * 31의 배수 : 7의 배수판정법과 비슷하게, 일의 자리 숫자를 제외한 후, 이 제외된 숫자를 3배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-3e=31k. 역시 얼마든지 반복할 수 있다. * '''33의 배수''' : 27의 배수 판정법과 비슷하게 일의 자리부터 두 자리씩 끊어서 더한 합이 33의 배수인 경우. 예를 들어 abcde가 있다면 a+bc+de=33k * 37의 배수 : 27의 배수와 똑같이, 4자리 이상일 경우 일의 자리에서부터 수를 세 자리씩 나눠 묶은 후 이들을 더한 값이 37의 배수이면 된다. 다른 방법으로는 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 11배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-11e=37k. 역시 얼마든지 반복할 수 있다. * 41의 배수 : 여섯 자리 수 이상인 경우 다섯 자리씩 나눠 묶은 후 이들을 더한 값이 41의 배수이면 된다. 다른 방법으로는 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 4배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-4e=41k. * 43의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 13배하여 남은 숫자에서 더한다. 예를 들어 abcde가 있다면 abcd+13e=43k. 다른 방법으로는 일의 자리와 십의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 3배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abc-3(de)=43k.[* 6579로 예시를 든다면 65-(79×3) = 65-237 = -172 = 43×-4.] 역시 반복할 수 있다. * 47의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 14배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-14e=47k. 다른 방법으로는 일의 자리와 십의 자리의 숫자를 제외하고 남은 숫자를 6배 한 뒤 제외된 숫자를 더한다. 예를 들어 abcde가 있다면 6(abc)+de=47k.[* 235로 예시를 든다면 2×6+35=47] 역시 반복할 수 있다. * '''49의 배수''' : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 5배하여 남은 숫자에서 더한다. 예를 들어 abcde가 있다면 abcd+5e=49k. 다른 방법으로는 47의 배수 판정법과 마찬가지로 일의 자리와 십의 자리의 숫자를 제외한 뒤 남은 숫자를 2배 한 뒤 제외된 숫자를 더한다. 예를 들어 abcde가 있다면 2(abc)+de=49k. * '''51의 배수''' : 17의 배수판정법과 동일하게 일의 자리 숫자를 제외한 뒤에 이 제외된 숫자를 5배하여 남은 숫자에서 뺀 값이 51의 배수이면 본래의 수도 51의 배수다. * 53의 배수 : 일의 자리 숫자를 제외한 뒤 이 제외된 숫자를 16배하여 남은 숫자에서 더한다. 예를 들어 abcde가 있다면 abcd+16e=53k. 다른 방법으로는 47의 배수 판정법과 반대로 일의 자리와 십의 자리를 제외하고 남은 숫자를 6배 한 뒤 제외된 숫자를 뺀다. 예를 들어 abcde가 있다면 6(abc)-de=53k. * 59의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 6배하여 남은 숫자에서 더한다. 예를 들어 abcde가 있다면 abcd+6e=59k. * 61의 배수 : 일의 자리 숫자를 제외한 뒤 이 제외된 숫자를 6배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-6×e=61k. * 67의 배수 : 일의 자리 숫자를 제외한 뒤 이 제외된 숫자를 20배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-20e=67k. 다른 방법으로는 일의 자리와 십의 자리 숫자를 제외한 뒤 이 제외된 숫자를 2배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abc-2(de)=67k. * 71의 배수 : 일의 자리 숫자를 제외한 뒤 이 제외된 숫자를 7배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-7e=71k. * 73의 배수 : 7의 배수 판정법과 비슷하게 네 자리 씩 끊어서 오른쪽부터 교대로 빼고 더하고를 반복한다. 예를 들어 abcdefghi가 있다면 fghi-bcde+a=73k * '''77의 배수''' : 7의 배수 판정법과 동일하게 세 자리 씩 끊어서 교대로 빼고 더한 값이 77의 배수인 경우. * 79의 배수 : 19의 배수 판정법과 비슷하다. 일의 자리 숫자를 제외한 후, 이 제외된 숫자를 8배하여 남은 숫자에 더한다. 예를 들어 abcde가 있다면 abcd+8e=79k. * '''81의 배수''' : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 8배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-8e=81k. * 83의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 25배하여 남은 숫자에서 더한다. 예를 들어 abcde가 있다면 abcd+25e=83k. * 89의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 9배하여 남은 숫자에서 더한다. 예를 들어 abcde가 있다면 abcd+9e=89k. * '''91의 배수''' : 일의 자리 숫자를 제외한 뒤 이 제외된 숫자를 9배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-9e=91k. 다른 방법으로는 7의 배수 판정법과 동일하게 일의 자리부터 세 자리 씩 묶은 뒤 교대로 빼고 더하고를 반복한다. * 97의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 29배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-29e=97k. 다른 방법으로는 마지막 두 자리 숫자를 제외한 후, 남은 숫자를 3배하여 제외된 숫자를 더한다. 예를 들어 abcde가 있다면 3(abc)+de=97k * '''99의 배수''' : 33의 배수 판정법과 동일하게 일의 자리부터 두 자리씩 끊어서 더한 값이 99의 배수인 경우. * 101의 배수 : 일의 자리부터 두 자리씩 끊어서 교대로 빼고 더한다. 예를 들어 abcde가 있다면 de-bc+a=101k. * 103의 배수 : 일의 자리의 숫자와 십의 자리 숫자를 제외한 뒤 남은 숫자를 3배하여 제외된 숫자에서 뺀다. 예를 들어 abcde가 있다면 3(abc)-de=103k. * 107의 배수 : 일의 자리의 숫자와 십의 자리 숫자를 제외한 뒤 남은 숫자를 7배하여 제외된 숫자에서 뺀다. 예를 들어 abcde가 있다면 7(abc)-de=107k. * 109의 배수 : 일의 자리의 숫자와 십의 자리 숫자를 제외한 뒤 남은 숫자를 9배하여 제외된 숫자에서 뺀다. 예를 들어 abcde가 있다면 9(abc)-de=109k. * '''111의 배수''' : 일의 자리부터 세 자리 씩 끊은 뒤에 더한다. 이 값이 111의 배수이면 본래의 수도 111의 배수다. * 113의 배수 : 일의 자리의 숫자와 십의 자리 숫자를 제외한 뒤 남은 숫자를 13배하여 제외된 숫자에서 뺀다. 예를 들어 abcde가 있다면 13(abc)-de=113k. * '''121의 배수''' : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 12배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-12e=121k. * 127의 배수 : 일의 자리의 숫자와 십의 자리 숫자를 제외한 뒤 남은 숫자를 27배하여 제외된 숫자에서 뺀다. 예를 들어 abcde가 있다면 27(abc)-de=127k. * 131의 배수 : 일의 자리의 숫자를 제외한 뒤 이 제외된 숫자를 13배하여 남은 숫자에서 뺀다. 예를 들어 abcde가 있다면 abcd-13e=131k. * 137의 배수 : 73의 배수 판정법과 동일하게 네 자리 씩 끊어서 오른쪽부터 교대로 빼고 더하고를 반복한다. 예를 들어 abcdefghi가 있다면 fghi-bcde+a=137k ---- 초중생 학습서에서 배수 판정법을 소개할 때 7의 배수 판정법은 없다고 못박는 경우가 많은데, 실제로는 있다. 다만, 7의 배수판정법은 까다로움이 13 이상의 큰 소수의 배수판정법과도 맥을 같이 하기 때문에 생략하는 것이다. [[http://m.navercast.naver.com/mobile_contents.nhn?rid=22&contents_id=1541|7의 배수 판정법을 소개한 네이버캐스트 수학산책의 글]] 한편, 임의의 수를 [[소수(수론)|소수]]의 곱 꼴로 바꿀 수 있는데 이를 [[소인수분해]]라고 한다. 달리 말하면 배수는 소인수분해의 [[역#s-2.1]]이다. === 법칙 === 배수 판정법에서는 일반적으로 다음과 같은 법칙이 성립한다. * 서로소인 자연수 a,,1,,, a,,2,,, ..., a,,n,,과 음이 아닌 정수 b,,1,,, b,,2,,, ..., b,,n,,에 대하여 어떤 자연수 c가 a,,1,,^^b,,1,,^^×a,,2,,^^b,,2,,^^×...×a,,n,,^^b,,n,,^^의 배수일 필요충분조건은 c가 a,,1,,^^b,,1,,^^, a,,2,,^^b,,2,,^^, ..., a,,n,,^^b,,n,,^^의 배수여야 한다는 것이다. 예를 들어 어떤 자연수가 200=2^^3^^×5^^2^^의 배수일 필요충분조건은 그 자연수가 8=2^^3^^의 배수이면서 25=5^^2^^의 배수여야 한다는 것이다. * 2 이상의 자연수 n에 대하여 n진법에서 (n-1)의 배수일 필요충분조건은 각 자릿수의 합이 (n-1)의 배수여야 한다는 것이다. 예를 들어 십진법에서는 9의 배수일 필요충분조건은 각 자릿수의 합이 9의 배수여야 한다는 것이다. * n진법에서 1부터 수를 세어 나가면 1, 2, 3, ..., (n-1), 10, 11, ...이 되는데, 여기서 값이 1 증가할 때 특정 자릿수의 값이 (n-1)에서 0으로 바뀌지 않으면 각 자릿수의 합은 1 증가한다. 또 특정 자릿수의 값이 (n-1)에서 0으로 바뀌는 경우, 나머지 자릿수 중 값이 1 증가하는 것이 하나 있기 때문에 각 자릿수의 합을 (n-1)로 나눈 나머지는 1 증가한다. 여기서 (n-1)은 (n-1)의 배수이므로 이것이 성립한다. * 이를 확장하면 n진법에서 n^^k^^-1(k는 자연수) 또는 그 약수의 배수인지를 판정할 수 있다. 예를 들어 십진법에서 99=10^^2^^-1의 배수인지를 판정하려면 일의 자리부터 두 자리씩 묶어서 그 수들의 합이 99의 배수이면 99의 배수인 것이고, 이로부터 당연히 그 약수인 11의 배수임을 알 수 있다. 예를 들어 15048은 두 자리씩 묶으면 1, 50, 48이고 1+50+48=99이므로 15048은 99의 배수이다. 위의 27, 37도 999의 약수이며, 303, 909의 배수, 41, 123, 271의 배수판정법 역시 이를 이용할 수 있다. 이론상 n진법에서 n과 서로소인 모든 수[* 이런 수는 n진법에서 역수를 소수(decimal number)로 표기하면 순순환소수로 나온다. 그리고 그 순환마디를 그 수에 곱하면 n^^k^^-1가 나온다.]에 적용이 가능하지만 그 수의 순환마디가 너무 긴 경우 적용하기 곤란해진다.[* 예를 들어 10진법에서 23의 배수 판정법을 이런식으로 판별하려면 1÷23의 순환마디가 22자리이므로 22자리씩 끊어야 된다.] * 이와 비슷하게 n진법에서 n^^k^^+1(k는 자연수) 또는 그 약수의 배수인지를 판정할 수 있다. 예를 들어 십진법에서 101=10^^2^^+1의 배수인지를 판정하려면 일의 자리부터 두 자리씩 묶어서 오른쪽부터 나열한 뒤 빼고 더하고를 교대로 반복한 값이 101의 배수이면 101의 배수임을 알 수 있다. 예를 들어 34643을 두 자리씩 묶은 뒤 오른쪽부터 배열하면 43, 46, 3이고 43-46+3=0이므로 34643은 101의 배수이다. 위의 7, 11, 13, 77, 91, 143의 배수 판정법도 이 방법을 이용할 수 있으며, 73, 137, 9091 역시 이 방법을 이용한 것. 이 방법은 n진법에서 n과 서로소인 자연수여서 역수를 소수로 표현하면 순순환소수가 되면서 순환마디가 짝수인 모든 수에 적용할 수 있다. 물론 순환마디가 너무 길 경우 이 방법을 적용하기 어렵다.[* 예를 들면 97의 경우 역수의 순환마디가 96자리이므로 이 방법을 적용하려면 48자리씩 끊어야 한다.] * 2^^n^^ 또는 5^^n^^ 꼴의 경우 일의 자리부터 n개 자리의 값, 즉 그 수를 10^^n^^으로 나눈 나머지가 그 수의 배수여야 한다. 예를 들어 112800은 일의 자리부터 만의 자리까지 5개 자리의 값이 12800이고, 이는 32의 배수이므로 2^^5^^=32의 배수이다. == 관련 문서 == * [[최소공배수]] * [[약수(수학)]] * [[소인수분해]] * [[산술의 기본정리]] [[분류:정수론]]