[include(틀:수학기초론)] [include(틀:과학 연구·실험)] [목차] == 개요 == {{{+1 [[證]][[明]] / proof}}} '''어떤 명제가 참인지, 거짓인지를 논리적으로 풀어내 보여주는 것.'''[* 엄밀히 말하면 참/거짓에 더해서 '참과 거짓을 판별할 수 없음'도 포함된다. 즉, 해당 문제가 '''증명이 불가능하다는 사실을 보이는 것''' 역시 엄연한 증명이다. 참과 거짓을 판별할 수 없다는 사실을 어떻게 논리적으로 전개하는지 의문스러울 수도 있지만, 대표적인 방법으로는 해당 명제가 참이라고 가정했을 때에도 모순이 없고 거짓이라 가정했을 때에도 모순이 없다는 것을 보인다면 이는 참과 거짓을 판별할 수 없는 명제가 된다. 이외에도 어떤 명제가 증명이 불가능하다는 사실을 증명하는 방법이 여럿 존재한다.] 다만 [[수학]]의 기호의 정의(定義)등은 [[약속]]이기 때문에, 증명할 수도 없고, 그것을 증명한다는 것 자체가 어폐가 있으므로 주의. 특정한 [[공리]]들을 가정하고, 그 가정하에서 어떤 명제가 참이라는 것을 보여주는 것을 가리킨다.(특정한 공리는 별다른 언급이 없으면 [[ZFC 공리계|체르멜로-프랭켈-선택공리계]]로 가정한다.) 참고로, 현대 수학에서는 증명이란 것 자체도 수학적으로 정의가 되어있다. 그렇기 때문에 수나 도형처럼 수학적 대상으로 만들어 연구가 가능하다.[* 이것이 극명하게 드러나는 것이 [[위상수학]]으로, 정말 별별 것들을 도형삼아 다룬다.] [[일상]]에서도, 어떤 사람의 발언을 잘못 믿고 [[의아]]([[疑]][[訝]])해 할때, 그 사람을 설득시키기 위해서나, 자신의 [[주장]]을 강하게 보여주기 위해서 쓰기도 한다. 너무 많이 쓰면 사람을 못 믿는 것 같은 인상을 보일 수 있으니 조심하자. 의심이라는 게 기본적으로 좋은 것이 아니니까. 일상생활에서는 유의어인 입증이나 검증보다 익숙한 어감 때문에 자주 쓰인다. [[과학]]에서는 이론을 증명했다는 말은 어지간해서는 쓰지 않는다. [[과학적 방법론]]에서 [[가설]]이 맞는지 확인하는 작업은 보통 "[[입증]]"이라고 하며, 수학적 논리적 정합성을 따지는 과정과 [[실험]] 혹은 [[관측|관찰]]을 통한 가설 연역 과정을 거쳐 이뤄진다. 만약 여기서 참임을 보이면 [[법칙]]이나 [[이론]]으로 승격된다. 이러는 이유는 과학 방법론에서의 증명은 논리적으로 가능한 모든 경우에 그 가설이 틀릴 가능성이 없음이 밝히는 것을 의미하기 때문이다. 과학은 경험이 개입하므로 현실적으로 증명이라는 것을 해내는 것은 불가능하다는 것이다. 대신 이론을 논리적, 수학적으로 전개하는 과정에서의 증명은 얼마든지 가능하다. 예를 들어 뉴턴 역학과 라그랑주 역학이 동일한 예측 결과를 준다는 것은 증명이 가능하다. 학부 수학,대학원 수학에서의 증명은 보통 어떤 수학적 개념의 정의를 갖고오거나 정리를 갖고와서 증명하는 경우가 많다. === 자연과학에서의 증명 기법 === * [[연역법|직접 증명법]] * '''간접 증명법''' : 간접 증명법의 종류로는 대우 증명법[* 어떤 명제와 그 명제의 대우는 진리치(참, 거짓)가 같다는 특성을 이용한 증명법], 모순 증명법([[귀류법]] 문서 참고)[* 명제를 반대로 가정하여 결론이 가정과 반대됨을 보여주어 명제가 참임을 증명하는 방법이다.], 반례 증명법[* 해당 명제의 반례가 있음을 보여주어 거짓임을 증명하는 방법이다.], [[애드혹|존재 증명법]][* 예제를 통한 증명 : 간단히 '어떤 수를 두 번 곱한 결과와 두 번 더한 결과가 같을 수 있다'라는 명제가 있는데 '''찾아보니 그 수가 [[2]] 또는 [[0]]이더라'''라고 해서 명제가 참이라고 증명하는 방법. 만일 직접 증명법으로 이 문제를 푼다면 2x = x^2 라고 2차[[방정식]]을 놓고 풀어야 한다. 듣기엔 그래도 실제로 꽤 요긴하게 쓰는 방법이다. 이런 종류의 명제는, ''''어떤''''이라는 말이 들어가서 예시를 하나라도 찾으면 되기 때문이다. 물론 명제가 거짓임을 보일 때도 이용된다(반례). 전설이 된 '[[메르센 소수|M(67)]]가 합성수임을 증명하는 것'도 이 수가 두 소수로 나눠 떨어짐을 칠판에 적기만 했을 뿐이었다.] * [[수학적 귀납법]] * 매거적 귀납법[* 위의 [[수학적 귀납법]] 참조]: 증명을 여러 경우의 수로 나누어 경우별로 증명하는 방법. ==== 컴퓨터를 이용한 증명 ==== * [[4색정리]] - 컴퓨터를 이용한 증명이 인정받은 최초의 경우이다. * [[케플러의 추측]] - 3차원 공간에서 구를 채우는 효율에 대한 문제인데, 케플러가 사망한지 400년이상 경과한 1998년, 토마스 헤일스가 컴퓨터를 이용하여 증명하였다. * [[골드바흐 추측|골드바흐의 약한 추측]] - 2013년에 수학자 엘프고트가 10^^30^^ 보다 큰 수에서 골드바흐의 약한 추측이 성립함을 증명하고, 10^^30^^ 보다 작은 수는 모두 [[노가다(수학)|컴퓨터를 돌려서]] 성립함을 확인하였다. 이로써 '골드바흐의 약한 추측'이 참임을 증명하였다. === 법률용어로서의 증명, 소송법상의 증명 방법 === * 본증 * 반증 == 관련 문서 == * [[존재성과 유일성]] * [[바쁜 비버]] - 리만 가설, 골드바흐의 추측과 같은 수학적 난제를 컴퓨터로 증명할 수 있는 [[이론상 최강]]의 알고리즘. 그러나 증명 과정에서 요구하는 연산량이 초월적으로 많아 실제 증명에 사용할 수 없다. [[분류:증명]]