[include(틀:해석학·미적분학)] [목차] == 개요 == {{{+1 Cauchy–Riemann equations}}} [[복소평면]]상의 열린 집합에서 정의된 복소함수가 해석적 함수, 즉 '''미분가능한 함수이기 위한 필요충분조건'''인 연립 [[편미분방정식|편미분 방정식]]이다. 즉, 다음 성질을 의미한다. ||함수 [math(f\left(z\right)=u\left(z\right)+iv\left(z\right))]가 복소평면상의 열린 집합 [math(C)]에서 정의될 때, 이 함수가 미분 가능할(=해석적 / 정칙적일) 필요충분조건은 다음과 같다. [math(\begin{cases} \displaystyle{\partial u\over\partial x}=\displaystyle{\partial v\over\partial y}\\\\\displaystyle{\partial u\over\partial y}=-\displaystyle{\partial v\over\partial x}\end{cases})]|| [[오귀스탱루이 코시|코시]]와 [[베른하르트 리만|리만]]이라는 이름이 들어갔음에도 불구하고, 이 연립방정식은 [[유체역학]]을 연구하던 프랑스의 수학자 [[달랑베르]]에 의해서 처음으로 발견되었다. 실제로 당해 방정식과 퍼텐셜 유동 방정식은 상당히 유사하다. 코시와 리만이 복소해석학의 발전과정에서 이 방정식을 매우 유용하게 써먹었기 때문에 둘의 이름이 붙게 되었다. 극좌표에서는, ||[math(\displaystyle\begin{cases}\displaystyle r\cdot \frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}\\\\\displaystyle \frac{\partial u}{\partial \theta} = -r\frac{\partial v}{\partial r}\end{cases})]|| 로 쓸 수 있다. 여담으로 코시-리만 방정식을 이용하면 코시-리만 방정식을 만족하는 조화함수는 그린 정리를 토대로 선적분으로 변수 치환을 할 필요 없이 '''내부에 특이점이 없는 단순 폐곡선'''의 적분값은 0이라는 것을 바로 도출할 수도 있다. 자세한 내용은 [[그린 정리]] 참조. 동일한 방법으로 보존적 벡터장의 단순 폐곡선 적분값이 0이라는 것도 증명이 가능하다. == 증명 == === → === ||복소평면상의 열린 집합 [math(C)]에서 정의된 함수 [math(f\left(z\right)=u\left(z\right)+iv\left(z\right))]가 미분 가능하다면, [math(\displaystyle u_x = v_y)], [math(\displaystyle u_y = -v_x)]를 만족한다. || 함수 [math(f\left(z\right)=f\left(x, y\right)=u\left(x, y\right)+iv\left(x, y\right))]가 점 [math(z_0=x_0+iy_0=\left(x_0, y_0\right))]에서 미분 가능하다고 하자. [math(z_0=x_0+iy_0)], [math(\Delta z=\Delta x + i \Delta y)]로 점 [math(z_0)]와 증편 [math(\Delta z)]를 둔 뒤, 함수의 증편을 구하자. [math(\displaystyle \begin{aligned}\Delta w&=f\left(z_0+\Delta z\right)-f\left(z_0\right)\\&=\{u\left(x_0+\Delta x, y_0+\Delta y\right)-u\left(x_0, y_0\right)\}+i\{v\left(x_0+\Delta x, y_0+\Delta y\right)-v\left(x_0, y_0\right)\}\end{aligned})] 가 된다. 복소함수의 극한은 다음의 정리를 만족한다. ||[math(f\left(z\right)=u\left(x, y\right)+iv\left(x,y\right), z=x+iy, z_0=x_0+iy_0, w_0=u_0+iv_0)]이라 할 때 다음 두 식은 서로 동치이다. {{{#!wiki style="text-align: center" [math(\displaystyle{\lim_{z \to z_0}f(z)=w_0} \iff \displaystyle{\lim_{\left(x,y\right) \to \left(x_0,y_0\right)}u\left(x,y\right)=u_0, \lim_{\left(x,y\right) \to \left(x_0,y_0\right)}v\left(x,y\right)=v_0})] }}}|| 이때, 함수 [math(f(z))]의 도함수 [math(\displaystyle f'\left(z_0\right)={\lim_{\Delta z \to 0}\frac{\Delta w}{\Delta z}})]가 존재하므로 다음이 성립한다. [math(f'\left(z_0\right)=\displaystyle{\lim_{\left(\Delta x,\Delta y\right)\to \left(0,0\right)}\Re\left(\frac{\Delta w}{\Delta z}\right)+i\lim_{\left(\Delta x,\Delta y\right)\to \left(0,0\right)}\Im\left(\frac{\Delta w}{\Delta z}\right)})] 여기서 이변수 함수의 미분에서 성립하는 성질을 생각하자. 즉, 점 [math(z=z_0+\Delta z)]에서 [math(\Delta z=\left(\Delta x, \Delta y\right))]의 경로를 어떻게 잡아도 도함수가 존재한다면 위의 방정식은 항상 성립한다는걸 명심하자. 경로를 어떻게 잡아도 상관 없기에 다음 두 개의 경로를 선택하자. [math(\left(\Delta x,0\right)\to\left(0,0\right))] [math(\left(0,\Delta y\right)\to\left(0,0\right))] 각각에 대하여 다음이 성립한다. ||[math(\left(\Delta x,0\right)\to\left(0,0\right))]에 대하여, [math(\Delta y=0)]이므로, 다음이 성립한다. [math(\displaystyle{\frac{\Delta w}{\Delta z}=\frac{u\left(x_0+\Delta x, y_0\right)-u\left(x_0, y_0\right)}{\Delta x}+i\frac{v\left(x_0+\Delta x, y_0\right)-v\left(x_0, y_0\right)}{\Delta x}})] [math(\displaystyle{\lim_{\left(\Delta x,\Delta y\right)\to \left(0,0\right)}\Re\left(\frac{\Delta w}{\Delta z}\right)=\lim_{\Delta x \to 0}\frac{u\left(x_0+\Delta x, y_0\right)-u\left(x_0, y_0\right)}{\Delta x}}=u_x\left(x_0, y_0\right))] [math(\displaystyle{\lim_{\left(\Delta x,\Delta y\right)\to \left(0,0\right)}\Im\left(\frac{\Delta w}{\Delta z}\right)=\lim_{\Delta x \to 0}\frac{v\left(x_0+\Delta x, y_0\right)-v\left(x_0, y_0\right)}{\Delta x}}=v_x\left(x_0, y_0\right))] 이를 정리하면, [math(f'\left(z_0\right)=u_x\left(x_0, y_0\right)+iv_x\left(x_0, y_0\right))]가 된다. …①|| 마찬가지로, ||[math(\left(0, \Delta y\right)\to\left(0,0\right))]에 대하여, [math(\Delta x=0)]이므로, 다음이 성립한다. [math(\begin{aligned}\displaystyle{\frac{\Delta w}{\Delta z}}&=\displaystyle{\frac{u\left(x_0, y_0+\Delta y\right)-u\left(x_0, y_0\right)}{i\Delta y}+i\frac{v\left(x_0, y_0+\Delta y\right)-v\left(x_0, y_0\right)}{i\Delta y}}\\&=\displaystyle{\frac{v\left(x_0, y_0+\Delta y\right)-v\left(x_0, y_0\right)}{\Delta y}-i\frac{u\left(x_0, y_0+\Delta y\right)-u\left(x_0, y_0\right)}{\Delta y}}\end{aligned})] [math(\displaystyle{\lim_{\left(\Delta x,\Delta y\right)\to \left(0,0\right)}\Re\left(\frac{\Delta w}{\Delta z}\right)=\lim_{\Delta y \to 0}\frac{v\left(x_0, y_0+\Delta y\right)-u\left(x_0, y_0\right)}{\Delta y}}=v_y\left(x_0, y_0\right))] [math(\displaystyle{\lim_{\left(\Delta x,\Delta y\right)\to \left(0,0\right)}\Im\left(\frac{\Delta w}{\Delta z}\right)=\lim_{\Delta y \to 0}-\frac{u\left(x_0, y_0+\Delta y\right)-v\left(x_0, y_0\right)}{\Delta y}}=-u_y\left(x_0, y_0\right))] 이를 정리하면, [math(f'\left(z_0\right)=v_y\left(x_0, y_0\right)-iu_y\left(x_0, y_0\right))]가 된다. …②|| 미분 가능(=해석적)하기 위해서는 경로에 상관없이 도함수가 같아야 하므로, 복소수의 상등조건에 따라 실수 함수부와 허수 함수부가 같으면 된다. ①과 ②를 연립하자. [math(f'\left(z_0\right)=u_x\left(x_0, y_0\right)+iv_x\left(x_0, y_0\right)=v_y\left(x_0, y_0\right)-iu_y\left(x_0, y_0\right))]이므로, [math(u_x=v_y, u_y=-v_x)]일 때 두 도함수는 같게 된다. 따라서 [math(f\left(z\right)=u\left(z\right)+iv\left(z\right))]가 미분가능하다면, 아래의 연립방정식을 만족한다. [math(\begin{cases} \displaystyle{\partial u\over\partial x}=\displaystyle{\partial v\over\partial y}\\\displaystyle{\partial u\over\partial y}=-\displaystyle{\partial v\over\partial x}\end{cases})] === ← === ||복소평면상의 열린 집합 [math(C)]에서 정의된 함수 [math(f\left(z\right)=u\left(z\right)+iv\left(z\right))]가 [math(\displaystyle u_x = v_y)], [math(\displaystyle u_y = -v_x)]를 만족한다면, 함수 [math(f(z))]는 열린 집합 [math(C)]에서 미분 가능하다(=해석적이다, 정칙이다). || ==== 보조정리 1 ==== ||닫힌 구간 [math(I = [a,\, b] \subset \mathbb{R})]가 주어질 때, [math(I)] 위에 정의된 복소함수 [math(\phi : I \to \mathbb{C})]가 다음 조건을 만족한다고 하자. * [math(\phi)]가 미분 가능하다. * 상수 [math(M > 0)]에 대하여 [math(I)]의 닫힌 부분집합 [math(E \not= \emptyset)]가 다음 조건을 만족한다. {{{#!wiki style="text-align: center" [math(\left\vert \phi(x) - \phi(y) \right\vert \le M \left\vert x - y \right\vert \quad (x \in E,\, y \in I))] }}} 그러면 다음과 같은 부등식이 성립한다. (단, [math(m_1)]은 [math(\mathbb{R})]에서의 르벡 측도(Lebesgue measure)이다.) {{{#!wiki style="text-align: center" [math(\displaystyle \left\vert \phi(b) - \phi(a) - \int_E \phi'(x) \,dx \right\vert \le M \cdot m_1(I \setminus E) )] }}}|| {{{#!folding [ 증명 ] 임의의 닫힌 구간 [math(J = [\alpha,\, \beta] \subseteq I)]에 대하여 함수 [math(\phi_J : \mathbb{R} \to \mathbb{C})]를 다음과 같이 정의한다. [math(\displaystyle \phi_J (x) = \frac{\phi(\beta) - \phi(\alpha)}{\beta - \alpha}x + \frac{\beta\phi(\alpha) - \alpha\phi(\beta)}{\beta - \alpha})] 그러면 [math(\phi_J(\alpha) = \phi(\alpha))], [math(\phi_J(\beta) = \phi(\beta))]가 성립하고, 모든 [math(x,\,y \in \mathbb{R})]에 대하여 다음 식을 만족하게 된다. [math(\displaystyle \left\vert \phi_J (x) - \phi_J(y)\right\vert \le \frac{\vert\phi(\beta) - \phi(\alpha)\vert}{\beta - \alpha}\left\vert x - y \right\vert)] 집합 [math(E_0 = E \cup \left\{ a,\, b\right\})]일 때, [math(I)] 위에서 새로운 복소함수 [math(\psi)]를 다음과 같이 정의한다. i. [math(\psi(x) = \phi(x) \quad (x \in E_0))] i. 만약 [math(x \in I \setminus E_0)]이고, [math(I \setminus E_0)]에서 [math(x)]의 연결 성분(connected component)[* 쉽게 설명하면 [math(I \setminus E_0)]의 부분집합이고, [math(x)]를 포함하는 가장 큰 열린 구간을 말한다.]을 [math(C_x)] 라 할 때, [math(\psi(x) = \phi_{\,\overline{C_x}}(x))]이다. (이때 [math(\overline{C_x})]은 [math(C_x)]의 폐포(closure)다.) 그러면 [math(\psi)]가 [math(I)] 위에서 연속적으로 잘 정의된다. 이제 이 [math(\psi)]가 [math(I)]에서 [math(M)]-립시츠 연속([math(M)]-Lipschitz continuous)임을 보이자. 즉, [math(\displaystyle \left\vert \psi (x) - \psi(y)\right\vert \le M \left\vert x - y \right\vert \quad (x,\,y \in I))] 임을 보이는 것이다. 일반성을 잃지 않고 [math(a \le x < y \le b)] 라고 하자. 그러면 아래의 경우로 나눌 수 있다. 1. '''[math(\left\{ x,\, y \right\} \subset \overline{C_\lambda} = [\alpha,\, \beta])]인 어떤 [math(\lambda \in I \setminus E_0)]가 존재하는 경우''' [br] [math(\displaystyle \left\vert \psi (x) - \psi(y)\right\vert \le \frac{\vert\phi(\beta) - \phi(\alpha)\vert}{\beta - \alpha} \left\vert x - y \right\vert)] 이고, [math(\alpha)]와 [math(\beta)] 둘 중 하나는 적어도 [math(E)]에 속한다.[* 그렇지 않을 경우, [math(\alpha = a)], [math(\beta = b)] 가 되어 [math(E = \emptyset)]이 된다.] 따라서 가정에 의해 [math(\left\vert \phi(\alpha) - \phi(\beta) \right\vert \le M ( \beta - \alpha ))]이므로 [math(M)]-립시츠 연속이다. [br] 1. '''그러한 [math(\lambda \in I \setminus E_0)]가 존재하지 않는 경우''' [math(x < \xi < y)]를 만족하는 [math(\xi \in E)]가 존재한다.[* 그렇지 않을 경우, 열린 구간 [math((x,\, y))]는 [math(E_0)]와 서로소가 되어 [math((x,\, y))]를 포함하는 어떤 연결 성분 [math(C_\lambda)]가 존재하게 된다.] 만약 [math(x \in E_0)]이면, 가정에 따라 [math(\vert \psi(x) - \psi(\xi)\vert \le M\vert \xi - x \vert)]가 된다. [math(x \not\in E_0)]이면, [math(x' = \sup C_x)]이라 할 때, [math(\displaystyle \begin{aligned} \left\vert \psi (x) - \psi(\xi)\right\vert &\le \left\vert \psi (x) - \psi(x')\right\vert + \left\vert \psi (x') - \psi(\xi)\right\vert \\ & \le M(x' - x) + M(\xi - x') \\ & = M(\xi - x) \end{aligned})] 이 되고, [math(y)]의 경우도 비슷하게 증명된다. 따라서 [math(\psi)]는 [math(M)]-립시츠 연속이고, 절대연속(absolutely continuous)이므로 르벡 지배수렴 정리(Lebesgue's dominated convergence theorem)에 의해 [math(\displaystyle \psi(b) - \psi(a) = \phi(b) - \phi(a) = \int_E \psi'(x) \,dx + \int_{I \setminus E} \psi'(x) \,dx)] 를 만족한다.[* [math(\psi)]가 [math(M)]-립시츠 연속이므로 [math(\vert \psi' \vert \le M)]을 만족한다.] 이때 모든 [math(x \in E)]에 대하여 [math(\phi = \psi)]이고, [math(\phi)]가 모든 점에서 미분가능하므로 [math(x)]가 고립점(isolated point)이 아닐 때 [math(\phi'(x) = \psi'(x))]를 만족하게 된다. [math(\mathbb{R})]에서 [math({E})]의 고립점들은 기껏 해야 가산(countable)이므로, 거의 모든 곳(almost everywhere)에서 [math(\phi' = \psi')]를 만족하게 된다. 따라서 [math(\displaystyle \left\vert \phi(b) - \phi(a) - \int_E \phi'(x) \,dx \right\vert \le \left\vert \int_{I \setminus E} \psi'(x) \,dx \right\vert \le M \cdot m_1(I \setminus E) )] 를 만족하게 된다. }}} ==== 보조정리 2 ==== ||복소평면 상의 열린 집합 [math(C \subseteq \mathbb{C})]에 대하여 [math(C)] 위에서 정의된 연속함수 [math(f)], 사각형 영역 [math(R = [a,\, b] \times [c,\, d] \subset C)]과 [math(1/A \le (d - c)/(b - a) \le A)]를 만족하는 상수 [math(A > 0)]가 주어졌다고 하자. 또한 상수 [math(M > 0)]과 [math(C)]의 닫힌 부분집합 [math(E \not= \emptyset)]가 {{{#!wiki style="text-align: center" [math(\displaystyle \begin{cases} \vert f(x',\, y) - f(x,\, y) \vert \le M \vert x' - x \vert \quad \text{where}\ \ (x,\, y) \in E \text{ and } (x',\, y) \in C, \\ \vert f(x,\, y') - f(x,\, y) \vert \le M \vert y' - y \vert \quad \text{where}\ \ (x,\, y) \in E \text{ and } (x,\, y') \in C \end{cases} )] }}} 를 만족한다고 하자. 그리고 모든 [math(x + iy \in C\ (x,\, y \in \mathbb{R}))]에 대하여 [math(\displaystyle f_x = \frac{\partial f}{\partial x}, f_y = \frac{\partial f}{\partial y})]가 존재한다고 하자. 그리고 [math(R_0 \subseteq R)]을 [math(E \cap R)]을 포함하는 모든 닫힌 사각형 영역의 교집합이라고 하자.[* [math(E \cap R \not= \emptyset)]일 때 [math(R_0)]는 단순 닫힌 사각형 영역일 수도 있고, [math(\left\{ a \right\} \times [b,\, c])], [math([a,\, b] \times \left\{ c \right\})], [math(\left\{ a \right\} \times \left\{ b \right\})] 형태('''축퇴 사각형꼴, degenerated rectangle''')일 수도 있다.] 그러면 다음과 같은 부등식이 성립한다. (단, [math(m_2)]는 [math(\mathbb{R}^2 = \mathbb{C})]에서의 르벡 측도(Lebesgue measure)이다.) {{{#!wiki style="text-align: center" [math(\displaystyle \left\vert \int_{\partial R_0} f \,dz - 2i\iint_{E \,\cap\, R} \frac{\partial f}{\partial \overline{z}} \,dxdy \right\vert \le 8AM \cdot m_2 \left( R \setminus (E \cap R) \right) )]}}}|| 해당 보조정리는 보조정리 1을 2차원 복소평면([math(\mathbb{C} = \mathbb{R}^2)])으로 확장한 결과이다. {{{#!folding [ 증명 ] [math(E \cap R = \emptyset)] 일 경우 해당 정리는 자명하게 증명된다. 따라서 [math(E \cap R \not= \emptyset)] 이라고 가정하자. [math(R_0 = [a_0,\, b_0] \times [c_0,\, d_0] = I \times J)]라고 하자.[* [math(a_0 = b_0)]일 수도 있고, [math(c_0 = d_0)]일 수도 있다.] [math(x \in I)]에 대하여 [math(E_x = \left\{ y \in J \vert (x,\, y) \in E \right\})]라고 하면 가정에 의해 [math(\vert f(x,\, y') - f(x,\, y) \vert \le M \vert y' - y \vert \quad \text{where}\ \ y \in E_x \text{ and } y' \in J)] 이고, [math(E_x \not= \emptyset)]일 때 '''보조정리 1'''에 의해 다음 식이 성립한다. [math(\displaystyle \left\vert f(x,\, d_0) - f(x,\, c_0) - \int_{E_x} \frac{\partial f}{\partial y} \,dy \right\vert \le M \cdot m_1(J \setminus E_x) \le 4AM \cdot m_1(J \setminus E_x) )] 만약 [math(E_x = \emptyset)]일 경우엔 [math(R_0)]의 정의에 의해 [math((\xi,\, c_0) \in E \cap R)]이고, [math((\xi',\, d_0) \in E \cap R)]인 [math(\xi,\, \xi' \in I)]을 찾을 수 있다. 그러면 {{{#!wiki style="text-align:center" [[파일:cauchyriemman1_lemma1.png|width=300px]] }}} [math(\displaystyle \begin{aligned} \left\vert f(x,\, d_0) - f(x,\, c_0) \right\vert \,\le\, & {\color{red} \left\vert f(x,\, d_0) - f(\xi',\, d_0) \right\vert} + {\color{blue} \left\vert f(\xi',\, d_0) - f(\xi',\, c_0) \right\vert } \\ & + {\color{green} \left\vert f(\xi',\, c_0) - f(\xi,\, c_0) \right\vert } + {\color{orange} \left\vert f(\xi,\, c_0) - f(x,\, c_0) \right\vert } \\ \,\le\, &\, M\left( {\color{red}|x - \xi'|} + {\color{blue}|d_0 - c_0|} + {\color{green}|\xi' - \xi|} + {\color{orange}|\xi - x|} \right). \end{aligned} )] 이때 [math(|d_0 - c_0| \le (d - c))]이고, [math(|x - \xi'| + |\xi' - \xi| + |\xi - x| \le 3|b_0 - a_0| \le 3(b - a) \le 3A(d - c))] 이므로 [math(\left\vert f(x,\, d_0) - f(x,\, c_0) \right\vert \le 4AM(d - c))]이다. 따라서 [math(\displaystyle \left\vert f(x,\, d_0) - f(x,\, c_0) - \int_{E_x} \frac{\partial f}{\partial y} \,dy \right\vert \le 4AM(d - c - m_1(E_x)))] 이고, 양변을 [math(I)] 위에서 [math(x)]에 대해 적분하면 [math(\displaystyle \begin{aligned} &\left\vert \int_{a_0}^{b_0} \left(f(x,\, d_0) - f(x,\, c_0)\right) \,dx - \iint_{E \,\cap\, R} \frac{\partial f}{\partial y}\,dxdy \right\vert \\ \le\ & 4AM \left( (b_0 - a_0)(d - c) - m_2(E \cap R_0) \right) \\ \le\ & 4AM \cdot m_2\left(R \setminus (E \cap R) \right) \quad (\because E \cap R_0 = E \cap R) \end{aligned} )] 가 성립한다. 비슷한 방식으로 [math(\displaystyle \left\vert \int_{c_0}^{d_0} \left(f(b_0,\, y) - f(a_0,\, y)\right) \,dy - \iint_{E \,\cap\, R} \frac{\partial f}{\partial x}\,dxdy \right\vert \le 4AM \cdot m_2\left(R \setminus (E \cap R) \right) )] 도 성립함을 알 수 있다. 이때 [math(\displaystyle \int_{\partial R_0} f \,dz = \int_{a_0}^{b_0} \left( f(x,\, c_0) - f(x,\, d_0) \right) \,dx + i \int_{c_0}^{d_0} \left( f(b_0,\, y) - f(a_0,\, y) \right) \,dy )] 이고, [math(2i\,{\partial f}/{\partial \overline{z}} = - {\partial f}/{\partial y} + i\,{\partial f}/{\partial x})]이므로 위에서 얻은 두 부등식을 적절히 연립하면 다음과 같은 식을 얻을 수 있다. [math(\displaystyle \left\vert \int_{\partial R_0} f \,dz - 2i\iint_{E \,\cap\, R} \frac{\partial f}{\partial \overline{z}} \,dxdy \right\vert \le 8AM \cdot m_2 \left( R \setminus (E \cap R) \right). )] }}} ==== 본정리(Looman-Menchoff theorem) ==== ||복소평면상의 열린 집합 [math(C)]에서 정의된 연속함수 [math(f)]가 모든 [math(x + iy \in C\ (x,\, y \in \mathbb{R}))]에 대하여 [math(\displaystyle f_x = \frac{\partial f}{\partial x},\, f_y = \frac{\partial f}{\partial y})]가 존재한다고 하자. 이때 [math(C)] 위에서 다음 식을 만족시키면 [math(f)]는 [math(C)]에서 미분 가능(holomorphic, analytic)하다. {{{#!wiki style="text-align: center" [math(\displaystyle \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}\left( f_x + if_y \right) \equiv 0 \ \text{on }C. )]}}}|| {{{#!folding [ 증명 ] [math(z \in C)] 중 어떤 [math(z)]의 근방(neighborhood) [math(U_z)]가 존재하여 [math(f)]가 [math(U_z)]에서 미분 가능하게 만드는 [math(z)]들을 모두 모은 집합을 [math(C')]이라고 하자. [math(E = C \setminus C')]이라 하면 [math(E)]는 [math(C \setminus E)] 위에서 [math(f)]가 정칙이 되게 하는 가장 작은 [math(C)]의 닫힌 부분집합일 것이다. 우리가 보이고 싶은 것은 [math(E = \emptyset)]이므로, [math(E \not= \emptyset)]을 가정하자. 먼저 열린 집합 [math(W \subseteq C)]와 상수 [math(M > 0)]이 존재하여 [math(E \cap W \not= \emptyset)]이고, [math((x,\, y) \in E \cap W)], [math((x',\, y),\, (x,\, y') \in W)]에 대하여 [math(|f(x',\, y) - f(x,\, y)| \le M|x' - x|,\ |f(x,\, y') - f(x,\, y)| \le M|y' - y|)] 를 만족한다고 하자. [math(k \in \mathbb{N})]일 때 아래와 같은 집합을 정의한다. [math(\displaystyle \begin{aligned} &C_k^{(1)} = \left\{ (x,\, y) \in C \,\big\vert\, |f(x',\, y) - f(x,\, y)| \le k|x' - x| \text{ for } |x' - x| \le \frac{1}{k} \right\}, \\ &C_k^{(2)} = \left\{ (x,\, y) \in C \,\big\vert\, |f(x,\, y') - f(x,\, y)| \le k|y' - y| \text{ for } |y' - y| \le \frac{1}{k} \right\}, \\ &C_k = C_k^{(1)} \cap C_k^{(2)}. \end{aligned})] 그러면 [math(f)]는 연속이므로 [math(C_k)]는 [math(C)]에서 닫힌 집합이다. 그리고 [math(C)] 위의 모든 점에서 [math(f_x)]와 [math(f_y)]가 존재하므로 [math(x')]과 [math(y')]이 각각 [math(x)]와 [math(y)]로 갈 때, [math((f(x',\, y) - f(x,\, y))/(x' - x))]와 [math((f(x,\, y') - f(x,\, y))/(y' - y))]는 모두 수렴한다. 따라서 [math(\bigcup_{k \ge 1} C_k = C)]가 되고, [math(\bigcup_{k \ge 1} (C_k \cap E) = E)]가 된다. '''베르의 범주 정리(Baire category theorem)'''[* 조밀한 열린 집합들(dense open sets)의 가산 교집합(countable intersection)은 조밀(dense)하다라는 정리이다.][* 이 정리에 여집합을 적용하면 어디에서도 조밀하지 않은 닫힌 집합들(nowhere dense closed sets)의 가산 합집합(countable union)은 여전히 어디에서도 조밀하지 않으며, 만약 합집합한 결과가 공집합이 아닌 내부(nonempty interior)를 가질 경우 합집합하는 집합 중 적어도 하나는 공집합이 아닌 내부를 가져야 함을 알 수 있다.]에 따라 [math(C_k \cap E)] 중 하나인 [math(C_{k_0} \cap E)]는 [math(E)] 안에서 공집합이 아닌 내부(nonempty interior)를 가져야 함을 알 수 있다. 이 말은 열린 집합 [math(W \subset C)]가 존재하여 [math(\emptyset \not= W \cap E \subset C_{k_0} \cap E)]를 만족한다는 것이다. 그러면 [math(W)]가 [math(C)]에서 상대적 컴팩트(relatively compact)라고 할 수 있다. 그러면 [math(W)] 위에서 [math(|f| < c/2)]를 만족하는 [math(c > 0)]가 존재한다. 따라서 [math((x,\, y) \in E \cap W \subset C_{k_0} \cap E)], [math((x',\, y),\, (x,\, y') \in W)]에 대하여 [math(\displaystyle \left\vert f(x',\, y) - f(x,\, y) \right\vert \le \begin{cases} k_0|x' - x| & \text{if }\ |x' - x| \le \frac{1}{k_0} \\ ck_0|x' - x| & \text{if }\ |x' - x| > \frac{1}{k_0} \\ \end{cases})] 가 성립하고, 비슷한 방식으로 [math(\left\vert f(x,\, y') - f(x,\, y) \right\vert)]의 경우도 증명할 수 있다. 결과적으로 [math(M = \max\{k_0,\, ck_0\})]임을 알 수 있다. 이제 [math(f)]가 [math(W)] 위에서 미분 가능임을 보이자. 이는 '''모레라의 정리(Morera's theorem)'''[* 연결 열린 집합(connected open set) [math(D \subseteq \mathbb{C})]에서 연속 함수 [math(f : D \to \mathbb{C})]가 미분 가능할 필요충분조건은 임의의 조각마다(piecewise) [math(\mathcal{C}^1)] 닫힌 곡선 [math(\gamma : [\alpha,\, \beta] \to D)]에 대하여 [math(\int_{\gamma} f\,dz = 0)]이다.]에 따라 임의의 닫힌 사각형 영역 [math(R = [a,\, b] \times [c,\, d] \subset C)]에 대하여 [math(\int_{\partial R} f \,dz = 0)]임을 보이면 충분하다. [math(1/A \le (d - c)/(b - a) \le A)]인 상수 [math(A > 0)]를 선택하자. 그리고 임의의 양수 [math(\epsilon > 0)]에 대하여 [math(E \subset U)]이고, [math(m_2(U \setminus E) < \epsilon)] 인 열린 집합 [math(U)]를 잡자.[* 모든 닫힌 집합은 가측(measurable)이고, 외측도(outer measure)의 값과 같으므로 이러한 [math(U)]를 잡을 수 있다.] {{{#!wiki style="text-align:center" [[파일:cauchyriemman2.png|width=300px]] }}} 이제 [math(R)]을 가로와 세로로 절반씩 나누어 4등분하는 작업을 모든 사각형 영역에 반복하여 수행한다. 그러면 [math(N)]번 반복하였을 경우, 가로와 세로의 비율이 [math(R)]과 동일한 [math(4^N)]개의 작은 사각형 영역이 생기게 된다. 즉, 사각형 영역 중 하나를 [math(R_{j} = [\alpha,\, \beta] \times [\gamma,\, \delta])]일 때 [math(1/A \le (\delta - \gamma)/(\beta - \alpha) = (d - c)/(b - a) \le A)]이다. 이때 [math(N)]이 충분히 큰 경우, [math(R_j \cap E \not= \emptyset)]일 때 [math(R_j \subset U)] [math((j = 1,\, 2,\, \cdots \,,\, 4^N))]이 성립하게 된다. 따라서 [math(R_j \subset W \setminus E)]인 경우, '''코시 적분 정리'''에 의해 [math(\int_{\partial R_j} f \,dz = 0)]이므로 [math(\displaystyle \int_{\partial R} f \,dz = \sum_{j=1}^{4^N} \int_{\partial R_j} f \,dz = \sum_{\substack{R_j \,\cap\, E \not= \emptyset \\ j = 1,\, 2,\, \cdots \,,\,4^N}} \int_{\partial R_j} f \,dz)] 를 만족한다. [math(R_j^{(0)})]를 [math(E \cap R_j)]를 포함하는 모든 닫힌 사각형 영역의 교집합이라 했을 때, [math(\int_{\partial R_j} f \,dz = \int_{\partial R_j^{(0)}} f \,dz)]이다. [math(R_j \cap E \not= \emptyset)]이라 가정하고, '''보조정리 2'''를 적용하면 다음과 같다. [math(\displaystyle \begin{aligned} \left\vert \int_{\partial R_j} f \,dz \right\vert &= \left\vert \int_{\partial R_j^{(0)}} f \,dz \right\vert \\ &= \left\vert \int_{\partial R_j^{(0)}} f \,dz - 2i \iint_{E \cap R_j} \frac{\partial f}{\partial \overline{z}} \,dxdy \right\vert \quad (\because \frac{\partial f}{\partial \overline{z}} \equiv 0) \\ & \le 8AM \cdot m_2 \left( R_j \setminus (E \cap R_j) \right) \end{aligned} )] 따라서 [math(\displaystyle \left\vert \int_{\partial R} f \,dz \right\vert \le \sum_{R_j \,\cap\, E \not= \emptyset} \left\vert \int_{\partial R_j} f \,dz \right\vert \le 8AM \sum_{R_j \,\cap\, E \not= \emptyset} m_2 \left( R_j \setminus (E \cap R_j) \right))] 이다. 여기서 적당히 큰 [math(N)]에 대해서 [math(R_j \cap E \not= \emptyset)]은 [math(R_j \subset U)]를 의미하고, [math(j \not= j')]일 경우 [math(m_2(R_j \cap R_{j'}) = 0)]이다. 따라서 [math(\displaystyle \sum_{R_j \,\cap\, E \not= \emptyset} m_2 \left( R_j \setminus (E \cap R_j) \right) \le m_2(U \setminus (E \cap U)) < \epsilon)] 이고, [math(\displaystyle \left\vert \int_{\partial R} f \,dz \right\vert < 8AM\epsilon)] 이다. 여기서 [math(\epsilon > 0)]은 임의의 양수이므로, [math(\int_{\partial R} f \,dz = 0)]임을 알 수 있다. 따라서 모레라의 정리(Morera's theorem)에 의해 [math(W)]에서 [math(f)]는 미분 가능하며, [math(W \cap E \not= \emptyset)]과 모순된다. 따라서 [math(E = \emptyset)]이고, '''[math(f)]는 [math(C)]에서 미분 가능(holomorphic, analytic)하다.''' }}} [[분류:해석학(수학)]][[분류:방정식]]