기댓값

덤프버전 :

    통계학

Statistics
[ 펼치기 · 접기 ]




1. 개요
2. 정의
2.1. 이산 확률 변수
2.2. 연속 확률 변수
2.3. 응용
3. 성질
4. 기타
5. 참고 문서



1. 개요[편집]


/ expected value

어떤 확률 과정을 무한히 반복했을 때, 얻을 수 있는 값의 평균으로서 기대할 수 있는 값. 보다 엄밀하게 정의하면 기댓값은 확률 과정에서 얻을 수 있는 모든 값의 가중 평균이다.

확률변수 [math(X)]가 어떤 모집단 분포를 따를 때 [math(X)]의 기댓값을 (모)평균(population mean)이라고도 부른다. 예컨대 다음과 같은 표현을 많이 접할 것이다.

[math(X)]가 평균 [math(\mu)], 표준편차 [math(\sigma)]인 정규분포를 따른다고 하자.



2. 정의[편집]



2.1. 이산 확률 변수[편집]


이산 확률 변수 [math(X)]의 확률분포표가 다음과 같다고 하자. ([math(p\left(x\right))]는 확률 질량 함수)
[math(X)]
[math(x_1)]
[math(x_2)]
[math(\cdots)]
[math(x_n)]
[math(p\left(x\right))]
[math(p_1)]
[math(p_2)]
[math(\cdots)]
[math(p_n)]
이때 이산 확률 변수 [math(X)]의 기댓값은 [math(\text{E}\left(X\right))] 또는 [math(\mathbb{E}(X))][1]와 같이 나타내고 다음과 같이 정의한다.
[math(\displaystyle \mathbb{E}\left(X\right)=\sum_{i=1}^{n}{x_ip_i})]
이산 확률 변수 [math(X)]가 취하는 값의 개수가 무한한 경우, 즉 자연수 집합과 일대일 대응 되는 경우에도 비슷하게 정의된다.
[math(\displaystyle \mathbb{E}\left(X\right)=\sum_{i=1}^{\infty}{x_ip_i})]
단, 이 급수가 절대수렴해야 한다. 다시 말해서 각 항에 절댓값을 씌운 급수
[math(\displaystyle\sum_{i= 1}^\infty\lvert x_ip_i \rvert )]
가 무한대로 발산하는 경우는 기댓값이 정의되지 않는다. 이는 리만 재배열 정리란 녀석 때문이다.


2.2. 연속 확률 변수[편집]


연속 확률 변수 [math(X)]의 확률 밀도 함수가 [math(f(x))]라고 할 때 [math(X)]의 기댓값은 다음과 같이 정의한다.
[math(\displaystyle \mathbb{E}\left(X\right)=\int_{-\infty}^{\infty} x\, f(x)\, \mathrm{d}x = \int_{\mathbb{R}} x\, f(x)\, \mathrm{d}x)]
이산 확률 변수의 경우와 마찬가지로
[math(\displaystyle\int_{\mathbb{R}}\lvert xf(x) \rvert\mathrm{d}x)]
의 값이 무한대라면 기댓값이 정의되지 않는다.

이렇게 '정의되지 않음'은 기댓값의 고유한 특성이 아니라, 르베그 적분(Lebesgue integral)의 정의에서 오는 것이다. 위 이산 확률 변수의 경우도 이산 측도에서의 르베그 적분이므로[2] 마찬가지인 것. 이상적분(improper integral)과는 다르다.

예컨대 코시 분포(Cauchy distribution)[3]는 다음과 같은 확률밀도함수를 가진다.
[math(\displaystyle f(x)= \frac{1}{\pi\cdot(1+ x^2)})][4]
이 확률밀도함수는 표준정규분포와 유사하게 종 모양을 가지고 0을 중심으로 대칭이지만, 직관과는 달리 기댓값은 0이 아니고, 정의되지 않는다. 즉, 평균이 없는 분포다.[5] 이와 관련해서는 이상적분 항목 참조.


2.3. 응용[편집]


어떤 함수 [math(g)]에 대해 [math(g\left(X\right))]의 기댓값, 즉 [math(\text{E}\left(g\left(X\right)\right))]는 다음과 같이 정의된다.
  • 이산 확률 변수 : [math(\displaystyle \text{E}\left(g\left(X\right)\right)=\sum_{i=1}^{n}{g\left(x_i\right)p_i})]
  • 연속 확률 변수 : [math(\displaystyle \text{E}\left(g\left(X\right)\right)=\int_{-\infty}^{\infty}g\left(x\right)f\left(x\right)dx)]

예를 들어 [math(X)]의 분산 [math(\text{V}\left(X\right))]는 다음과 같이 나타낼 수 있다.
[math(\text{V}\left(X\right)=\text{E}\left(\left(X-\text{E}\left(X\right)\right)^2\right)=\text{E}\left(X^2\right)-\left\{\text{E}\left(X\right)\right\}^2)]


3. 성질[편집]


상수 [math(a)]의 기댓값은 [math(a)]이다.
  • [math(\text{E}\left(a\right)=a)]

기댓값선형성을 가진다. 즉, 다음이 성립한다. ([math(X, Y)]는 확률변수, [math(a)]는 상수)
  • [math(\text{E}\left(X+Y\right)=\text{E}\left(X\right)+\text{E}\left(Y\right))]
  • [math(\text{E}\left(aX+b\right)=a \text{E}\left(X\right)+b)]

확률변수 [math(X,\ Y)]가 서로 독립일 경우에는 다음의 성질도 성립한다.
  • [math(\text{E}\left(XY\right)=\text{E}\left(X\right)\text{E}\left(Y\right))]
이 성질을 갖는 [math(X,\ Y)]를 비상관(uncorrelated) 확률변수라 부르며 비상관이지만 독립은 아닌 경우도 있다. 대표적으로 [math(X)]의 분포가 짝함수이고 [math(Y=|X|)]인 경우가 있다.


4. 기타[편집]


동의어인 '기대치'라는 단어는 일상적으로 생각보다 많이 쓰이는데, "기대치가 너무 높다"라던가 "기대치에 못 미쳤다"와 같이 '바라는 정도'의 맥락으로 쓰이는 경우가 많다.

도박과 관련한 업계에서는 환수율이라는 말로 많이 쓰인다. 의미는 기대값하고 동일하다. 카지노 회사가 돈을 벌려면 게임에서 환수율은 수학적으로 1을 넘길 수 없다.

5. 참고 문서[편집]






파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-11-15 11:54:43에 나무위키 기댓값 문서에서 가져왔습니다.

[1] 물리학에서는 전자, 수학에서는 후자를 많이 쓴다.[2] 이산 확률 변수에서 저게 왜 적분이지? 할 수 있겠지만, 사실 [math(\displaystyle \sum_{x=a}^b f(x) \Leftrightarrow \int_{a}^{b} f(x) \, \mathrm{d} \lfloor x \rfloor)]이 성립한다는 것을 염두에 두면 적분 맞다.[3] 자유도가 1인 t-분포와 같다.[4] [math(\pi)] 뒤에 점을 찍은 이유는 [math(\pi(1+ x^2))]라고 쓰면 원주율과 다항식의 곱인지, 소수 계량 함수인지 혼동할 수 있기 때문.[5] 물론 중앙값은 0이다.