기묘체

덤프버전 :


양자역학
Quantum Mechanics


[ 펼치기 · 접기 ]
배경
흑체복사 · 이중슬릿 실험 · 광전효과 · 콤프턴 산란 · 보어의 원자 모형 · 물질파 · 데이비슨-저머 실험 · 불확정성 원리 · 슈테른-게를라흐 실험 · 프랑크-헤르츠 실험
이론 체계
체계
플랑크 상수(플랑크 단위계) · 공리 · 슈뢰딩거 방정식 · 파동함수 · 연산자(해밀토니언 · 선운동량 · 각운동량) · 스핀(스피너) · 파울리 배타 원리
해석
코펜하겐 해석(보어-아인슈타인 논쟁) · 숨은 변수 이론(EPR 역설 · 벨의 부등식 · 광자 상자) · 다세계 해석 · 앙상블 해석 · 서울 해석
묘사
묘사(슈뢰딩거 묘사 · 하이젠베르크 묘사 · 디랙 묘사) · 행렬역학
심화 이론
이론
양자장론(비상대론적 양자장론) · 양자 전기역학 · 루프 양자 중력 이론 · 게이지 이론(양-밀스 질량 간극 가설 · 위상 공간) · 양자색역학(SU(3))
입자·만물이론
기본 입자{페르미온(쿼크) · 보손 · (둘러보기)} · 강입자(둘러보기) · 프리온 · 색전하 · 맛깔 · 아이소스핀 · 표준 모형 · 기본 상호작용(둘러보기) · 반물질 · 기묘체 · 타키온 · 뉴트로늄 · 기묘한 물질 · 초끈 이론(초대칭 이론 · M이론 · F이론) · 통일장 이론
정식화 · 표기
클라인-고든 방정식 · 디랙 방정식 · 1차 양자화 · 이차양자화 · 경로적분(고스트) · 파인만 다이어그램
연관 학문
천체물리학(천문학 틀 · 우주론 · 양자블랙홀) · 핵물리학(원자력 공학 틀) · 응집물질물리학 틀 · 컴퓨터 과학 틀(양자컴퓨터 · 양자정보과학) · 통계역학 틀 · 양자화학(물리화학 틀)
현상 · 응용
양자요동 · 쌍생성 · 쌍소멸 · 퍼텐셜 우물 · 양자 조화 진동자 · 오비탈 · 수소 원자 모형 · 쌓음 원리 · 훈트 규칙 · 섭동(스핀 - 궤도 결합 · 제이만 효과 · 슈타르크 효과) · 선택 규칙 · 변분 원리 · WKB 근사법 · 시간 결정 · 자발 대칭 깨짐 · 보스-아인슈타인 응집 · 솔리톤 · 카시미르 효과 · 아로노프-봄 효과 · 블랙홀 정보 역설 · 양자점
기타
군론 · 대칭성 · 리만 가설 · 매듭이론 · 밀도행렬 · 물질 · 방사선(반감기) · 라플라스의 악마 · 슈뢰딩거의 고양이(위그너의 친구) · 교재


항성은하천문학
Stellar & Galactic Astronomy

[ 펼치기 · 접기 ]
항성천문학
항성 ()
광도 · 별의 등급 · 색등급도 · 여키스 분류법 · 하버드 분류법 · 별의 종족 · 다중성계(쌍성) · 변광성(세페이드 변광성) · 성단(산개성단의 분류 · 섀플리-소여 집중도 분류)
항성 진화
보크 구상체 · 진스 불안정성 · 하야시 경로 · 갈색왜성 · 황소자리 T형 별 · 주계열성 · 적색거성 · 적색초거성 · 볼프–레이에별 · 행성상성운 · 초신성(중력붕괴 · 좀비별 · 감마선 폭발)
밀집성
백색왜성(신성 · 찬드라세카르 한계) · 중성자별(뉴트로늄 · 기묘체) · 블랙홀(에딩턴 광도)
성간물질
성운(전리수소영역) · 패러데이 회전
은하천문학
기본 개념
은하(분류) · 활동은하핵(퀘이사) · 위성은하 · 원시은하(허블 딥 필드) · 툴리-피셔 관계 · 페이버-잭슨 관계 · 헤일로(암흑 헤일로)
우주 거대 구조
은하군 · 은하단 · 머리털자리 은하단 · 페르세우스자리-물고기자리 초은하단(페르세우스자리 은하단) · 섀플리 초은하단 · 슬론 장성 · 헤르쿨레스자리-북쪽왕관자리 장성
우리 은하
은하수 · 페르미 거품 · 국부 은하군(안드로메다은하 · 삼각형자리 은하 · 마젤란은하(대마젤란 은하 · 소마젤란 은하) · 밀코메다) · 처녀자리 초은하단(처녀자리 은하단) · 라니아케아 초은하단(화로자리 은하단 · 에리다누스자리 은하단 · 센타우루스자리 은하단 · 거대 인력체) · 물고기자리-고래자리 복합 초은하단
틀:천문학 · 틀:태양계천문학·행성과학 · 천문학 관련 정보



1. 개요
2. 상세




우주에서 가장 위험한 존재 - 기묘한 별[1]


1. 개요[편집]


Strangelet

기묘체천체물리학입자물리학에서 예견하는 미지의 물질이다. 일반 물질이 평균적으로 위 쿼크아래 쿼크로 이루어진 것과는 달리, 기묘 쿼크(Strange Quark)를 지니고 있는, 위 쿼크와 아래 쿼크, 기묘 쿼크가 모인 집합체다. 그 크기는 작게는 수 펨토미터에서 크게는 수 미터에 이를 것으로 추정된다.

1984년 에드워드 위튼과 파리와 재프가 처음 제안하였다.[2] 쿼크 너겟(quark nuggets), 뉴클리어라이트(nuclearite) 혹은 strange quark matter (SQM) 라고도 불린다.


2. 상세[편집]


질량이 큰 중성자별로 된 지각 아래에 존재할 것으로 추측되지만, 어디까지나 예측에 지나지 않는다. 일단 위 쿼크와 아래 쿼크, 기묘 쿼크가 1:1:1로 모인 [math(\Lambda^0)] 바리온으로 예측해 보면 [math(\Lambda^0)]의 특성상, 그 전기전하는 중성(위 쿼크의 +2/3, 아래 쿼크와 기묘 쿼크의 -1/3이 전기전하를 상쇄), 기묘도는 -1이지만, 고온고압상태인지라, [math(\Lambda^0)]끼리가 서로 반쯤 융합한, 쿼크글루온의 바다에 가까운 상태라고 추측된다.

이론적으로는 중성자별의 초고온고압 상황에서, 일반 물질들의 위 쿼크와 아래 쿼크가 높은 에너지에서 안정화 되기 위해서 일부가 기묘 쿼크로 변경되기 때문에 안정적으로 존재할 수 있다고 한다. 단, 기묘 쿼크의 특성상 약한 상호작용에 의해서 자연적으로 베타붕괴와 비슷한 과정을 거쳐서 보다 안정적인 위 쿼크로 붕괴하게 되므로 기묘체를 형성하지 않는 상황에서는 기묘 쿼크는 안정적으로 존재할 수 없다.[3] 쿼크끼리의 상호작용으로 인해 기묘체가 안정적으로 존재하여 암흑물질을 이루고 있다는 가설도 있다.[4]

이 물질은 이론적으로 예측된 성질이 상당히 위험한데, 접촉한 다른 양성자중성자의 쿼크와 약력으로 상호작용을 해서, 물질을 강제적으로 기묘체로 변경하는 성질이 있을 것으로 예상되는데, 생물학에서 연구하는 병원체 중 하나인 변형 프리온과 비슷하다고 볼 수 있다. 기묘체가 안정하고 음전하를 가지고 있다면 일반 물질을 끌여들어 모두를 기묘체로 만들 가능성이 있긴 하지만 그럴 가능성은 낮은 것으로 알려져 있다.


2020년 6월 헬싱키 대학 연구원들이 Nature Physics에 이 물질이 실재할 확률이 높다는 연구결과를 발표했다. 그러나 우주에서 가장 극단적인 환경에서만 존재할 수 있기 때문에 접근하거나 육안으로 관찰하는 것은 마치 블랙홀특이점에 대해 그렇게 하는 것만큼이나 어려울 것이다.


파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-11-15 18:44:07에 나무위키 기묘체 문서에서 가져왔습니다.

[1] 쿠르츠게작트의 영상.[2] E. Farhi and R. Jaffe, "Strange Matter", Phys. Rev. D30, 2379 (1984) E. Witten, "Cosmic Separation Of Phases" Phys. Rev. D30, 272 (1984)[3] 정확히는 [math(\Lambda^0)]는 [math(W^-)]를 방출하고 양성자로 붕괴하며, 이때 방출되는 [math( W^- )]는 대부분이 [math(\pi^-)]로 붕괴하는게 예측되어 있다. 또한, 낮은 확률이지만 [math(W^-)]가 베타붕괴와 동일하게 전자와 양전자-중성미자로 붕괴되는 것도 예측되어 있다.[4] Atreya et al.,"Reviving quark nuggets as a candidate for dark matter", Phys.Rev. D90 045010 (2014)