라플라스 변환

덤프버전 :

Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리



1. 개요
2. 수식
3. 원리
4. 사용
5. 구하는 방법
5.1. 라플라스 변환 표
5.2. 도함수
5.3. 함수와 다항식의 곱
5.4. 주파수 평행이동
5.5. 몫 형태
5.6. 합성곱(Convolution)
5.7. 역변환


1. 개요[편집]


Laplace transform

라플라스 변환은 수학자 라플라스의 이름을 따서 이름지어졌다. 라플라스가 현재 Z-변환이라 불리는 비슷한 변환을 확률론에서 사용했기 때문. 현재 사용되는 라플라스 변환은 제 2차 세계대전 전후로 올리버 헤비사이드(Oliver Heaviside), 토마스 브롬위치(Thomas John I'Anson Bromwich), 구스타프 도이치(Gustav Doetsch) 등의 많은 학자들의 기여로 완성되었다.

라플라스 변환에는 미분 방정식을 푸는 데 매우 유용한 도구가 되는 중요한 속성과 정리가 많이 있기에 매우 중요하다.

2. 수식[편집]


[math(\displaystyle F\left(s\right) = \mathcal{L}\left\{ f\right\} \left(s\right) \equiv \int_{0}^{\infty}e^{-st}f\left(t\right)dt)]

라플라스 변환을 나타내는 기호는 [math(\mathcal{L})]이다. 라플라스 변환 대신 라그랑지언을 이 기호로 쓰기도 한다. 사실 변수를 굳이 s가 아니라 x,t 뭘 쓰든 상관 없다. 저 이상적분식은 최종적인 결과가 s에 관한 함수로 나온다.

적분 구간이 0에서 부터 시작하는 것과 음의 무한대에서 시작하는 것 두가지 버전이 있는데, 전자를 unilateral Laplace transform, one-sided Laplace transform이라 부르고 후자를 bilateral Laplace transform, two-sided Laplace transform 이라 부른다.


3. 원리[편집]


간단하게 설명하자면 미분방정식을 다른 '공간'으로 변환시켜 더 단순하게 만든 후, 이를 풀어내는 기법. 즉 A공간에서는 매우 풀기 어려운 식을 B공간에서는 단순한 사칙연산으로만 구할 수 있다. 이때 A->B로 식을 가져간 뒤 풀고 다시 내가 있는 A공간으로 오기 위해 B->A공간으로 가져온다 이때 이용하는 통로를 라플라스 변환이라고 한다. 미분방정식의 eigenvalue(고유값)만 따서 계산하는 기법이라고 할 수 있다.[1]

선형 미분방정식에서는 가히 로피탈의 정리급 위력을 발휘하는 사기기술로, 어지간히 손대기도 힘든 2계 미분방정식[2]도 이녀석을 동원하고 적당히 라플라스 역변환을 시켜주면 근을 구해낼 수 있다. 다만 역변환[3]은 따로 공식이 있긴 하지만 복소해석학을 배워야 해서 어렵기 때문에 대신 부분분수분해를 통해 함수를 간단히 만든 후 라플라스 변환 표를 보고 적당히 역변환을 추리하는 것이 일반적이다.[4] 또한 선형 편미분방정식도 경계가 반무한(semi-infinite) 또는 양쪽 다 무한(infinite)이라면 풀 수 있다.

원래 라플라스 변환은 자연계의 운동들, 예를 들면 포락선(envelope) 같은 감쇠 현상을 설명하기 위해 고안된 개념이다. 위 공식에서 복소수 [math(s = \sigma+i\omega)]라는 걸 생각해보자. 여기에서 [math(\sigma)]과 [math(\omega)]는 실수이며 [math(i)]는 허수단위다. [math(s)]는 상수 [math(e)] 를 밑으로 한 지수인데, 지수 법칙을 이용해 이를 실수부와 허수부로 분리할 수 있다. 실수부는 감쇠를, 허수부는 오일러 공식에 의해 정현파(사인함수와 코사인함수) 형태로 표현된다. 이 둘을 곱하면 감쇄하는 진동운동이 표현된다.[5] 실수부 값에 따라 주어진 적분이 수렴하여 라플라스 변환이 존재할 수도 있고, 적분이 발산하여 라플라스 변환이 존재하지 않을 수도 있다. 이를 규정하는 기준을 수렴구간(ROC: Region Of Convergence)이라고 한다.

라플라스 변환으로 미분방정식을 푸는 과정을 개략적으로 설명하면

  1. t-공간에서의 복잡한 미분방정식
  2. 1.의 방정식을 적절하게 라플라스 변환
  3. s-공간에서의 본래 식보다는 간단한[6] 대수방정식 혹은 미분방정식(1의 미분방정식보다는 간단하다.)
  4. 3.의 해를 다시 적절하게 라플라스 변환
  5. t-공간에서의 미분방정식의 해

즉 t-공간에서의 결과물을 얻기 위해, 가상의 s-공간에서 무언가를 수행하는 방법이라 하겠다. 더 쉽게 말하면, 복잡한 녀석을 이해하기 일단 이해하기 쉬운 녀석으로 바꿔서 처리한 뒤, 그것을 다시 되돌려서 원래 의미를 알아내는 방법이라고 생각하면 된다.

하지만 이렇게 해서 풀 수 있는 것은 어디까지나 선형 미분방정식에 국한된다.[7] 비선형 방정식은 특별한 경우[8]가 아닌 이상 수치해석을 믿을 수밖에 없다.

4. 사용[편집]


미분방정식은 계수(order)가 높아질수록 해를 구하는 것은 거의 불가능하기 때문에 라플라스 변환을 사용한다. 주어진 미분방정식(differential equation)을 곧바로 푸는 것이 아니라 먼저 라플라스 변환한 후 대수방정식(algebraic equation)의 해를 구하고 다시 역변환하는 것이다. 이 방법을 적용하면 '일정 주기를 갖고 반복되는 함수형'(sin, cos, sinh, cosh 등)의 해를 그저 유리식의 사칙연산 수준만으로 구할 수 있어서 신호 처리 등에 유용하다. 이 목적을 위하여 원래 함수-변환된 함수를 세트로 모아놓은 표가 있다. 이름하여 라플라스 변환 표. 표 안에 세트가 수십 개 정도 있다.

주로 공과대학에서 공업수학을 통해 처음 배우며, 이후 회로이론, 제어공학, 신호 및 시스템 등의 과목에서 활용한다. 수많은 미분방정식을 풀어낼 때 유용하게 쓰이기 때문에 전자공학기계공학 전공자라면 어느 정도는 반드시 알아둬야 할 변환법이다. 수학과의 경우 미분방정식이라는 과목에서 배우게 된다.

라플라스 변환의 이산 버전으로 Z-변환(Z-transform)이라는게 있는데, 이는 차분방정식(difference equation)을 대수방정식(algebraic equation)으로 바꿔준다. 대부분의 성질이 라플라스 변환과 유사하며, 주로 디지털 시스템을 다루는 데 사용된다.

5. 구하는 방법[편집]


만약에 당신이 수학과라면 변환과 역변환의 과정을 직접 계산해서 보여야 할 일이 많을 것이다.[9] 이 문단에선 라플라스 변환 및 역변환에 관한 기술을 설명한다.


5.1. 라플라스 변환 표[편집]


[math(F(s) = \mathcal{L}\left\{f(t)\right\}(s) = \left(\mathcal{L}f\right)(s) )]같이 다양한 표기가 통용된다.
함수
[math(f(t))]
[math(F(s))]
ROC(수렴영역)
디랙 델타 함수[10]
[math(\delta(t))]
[math(1)]
모든 [math(s)]
단위 계단 함수[11][12]
[math( u(t))]
[math(s^{-1})]
[math(\Re(s) > 0)]
단위 램프 함수
[math(t u(t))]
[math(s^{-2})]
[math(\Re(s) > 0)]
위 함수를 포함한 n승꼴의 함수
[math(t^n u(t))]
[math( \dfrac{n!}{s^{n+1}})]
[math(\Re(s) > 0, n > -1)]
지수함수
[math(e^{-at}u(t))]
[math(\dfrac{1}{s+a})]
[math(\Re(s) > -a)]
사인 함수
[math(f(t) = \sin(\omega t) u(t))]
[math(F(s) = \dfrac{\omega}{s^2+\omega^2})]
[math(\Re(s) > 0)]
코사인 함수
[math(f(t) = \cos(\omega t) u(t))]
[math(F(s) = \dfrac{s}{s^2+\omega^2})]
[math(\Re(s) > 0)]
지수적으로 감쇄하는 사인 함수
[math(f(t) = e^{-at} \sin(\omega t) u(t))]
[math(F(s) = \dfrac{\omega}{(s+a)^2+\omega^2})]
[math(\Re(s) > -a)]
지수적으로 감쇄하는 코사인 함수
[math(f(t) = e^{-at} \cos(\omega t) u(t))]
[math(F(s) = \dfrac{s+a}{(s+a)^2+\omega^2})]
[math(\Re(s) > -a)]
쌍곡 사인 함수
[math(f(t) = \sinh(\omega t) u(t))]
[math(F(s) = \dfrac{\omega}{s^2-\omega^2})]
[math(\Re(s) > |\omega|)]
쌍곡 코사인 함수
[math(f(t) = \cosh(\omega t) u(t))]
[math(F(s) = \dfrac{s}{s^2-\omega^2})]
[math(\Re(s) > |\omega|)]


5.2. 도함수[편집]


[math(\mathcal{L}\left\{f'\left(t\right)\right\} = s\mathcal{L}\left\{f\left(t\right)\right\}-f\left(0\right))]

증명
[math(\displaystyle F\left(s\right) = \int_{0}^{\infty}e^{-st}f\left(t\right)dt)]
[math(\begin{matrix} \mathcal{L}\left\{f'\left(t\right)\right\}&=&\displaystyle\int_{0}^{\infty}e^{-st}f'\left(t\right)dt\\&=&\displaystyle\left[e^{-st}f(t)\right]_{0}^{\infty}+s\int_{0}^{\infty}e^{-st}f\left(t\right)dt\\&=&\displaystyle s\mathcal{L}\left\{f\left(t\right)\right\}-f\left(0\right)+\lim_{t\to\infty}e^{-st}f(t)\end{matrix})]
이때 [math(\mathcal{L}\left\{f\left(t\right)\right\})]가 계산 가능하기 위해 [math(\displaystyle\lim_{t\to\infty}e^{-st}f(t)=0)]이 선행되어야 하므로,
[math(\mathcal{L}\left\{f'\left(t\right)\right\} = s\mathcal{L}\left\{f\left(t\right)\right\}-f\left(0\right))]라는 원하는 결과를 얻게 된다.

이를 일반화한 식은 다음과 같다. 증명은 수학적 귀납법을 이용하면 할 수 있다.
[math(\mathcal{L}\left\{f^{\left(n\right)}\left(t\right)\right\} = s^{n}\mathcal{L}\left\{f\left(t\right)\right\}-s^{n-1}f\left(0\right)-s^{n-2}f'\left(0\right)-\cdots-f^{\left(n-1\right)}\left(0\right))]


5.3. 함수와 다항식의 곱[편집]


[math(\mathcal{L}\left\{-tf\left(t\right)\right\} = F'\left(s\right))]

예시: [math(\displaystyle \mathcal{L}\left\{te^{at}\right\} = -\frac{d}{ds}\left(\frac{1}{s-a}\right) = \frac{1}{\left(s-a\right)^2})]

증명
[math(\displaystyle F\left(s\right) = \int_{0}^{\infty}e^{-st}f\left(t\right)dt)]
[math(\displaystyle F'\left(s\right) = \int_{0}^{\infty} (-t)e^{-st} f(t) dt = \mathcal{L}\left\{-tf\left(t\right)\right\})]

이를 일반화한 식은 다음과 같다. 증명은 수학적 귀납법을 이용하면 할 수 있다.
[math(\displaystyle \mathcal{L}\left\{t^{n} f(t)\right\} = (-1)^{n}\frac{d^{n}}{ds^{n}}F(s))]

아래와 같이 변형할 수도 있다.

[math(\displaystyle \mathcal{L}^{-1}\{F(s)\} = f(t) = -\frac{1}{t}\mathcal{L}^{-1} \left\{ F'(s) \right\})]

예시: [math(\displaystyle \mathcal{L}^{-1}\left\{\ln\left(1-\frac{a^2}{s^2}\right)\right\} = \mathcal{L}^{-1}\left\{\ln\left(s^2-a^2\right)-2\ln s\right\} = \frac{2}{t}-\frac{2\cosh\left(at\right)}{t})]



5.4. 주파수 평행이동[편집]


[math(\displaystyle \mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a))]

예시: [math(\displaystyle \mathcal{L}\left\{e^{at}\sin\left(wt\right)\right\} = \frac{w}{\left(s-a\right)^2 +w^2})]

증명
[math(\displaystyle \mathcal{L}\left\{e^{at}f(t)\right\} = \int_{0}^{\infty}e^{-st}e^{at}f(t)dt = \int_{0}^{\infty}e^{-(s-a)t} f(t)dt = F(s-a))]


5.5. 몫 형태[편집]


함수 [math(f(t))]의 라플라스 변환과 [math(\displaystyle \lim_{t \to 0}\frac{f\left(t\right)}{t})]가 존재하면

[math(\displaystyle \mathcal{L}\left\{\frac{f(t)}{t} \right\} = \int_{s}^{\infty} F(u)du )]

예시: [math(\displaystyle \mathcal{L}\left\{\frac{\cos(at)-1}{t} \right\} = \int_{s}^{\infty}\frac{u}{u^2+a^2}-\frac{1}{u}du = -\ln\sqrt{1+\frac{a^2}{s^2}})][13]


증명
[math(\displaystyle \int_{s}^{\infty} F(u)du = \int_{s}^{\infty}\int_{0}^{\infty}e^{-ut} f(t) dtdu = \int_{0}^{\infty} \int_{s}^{\infty}e^{-ut} f(t) dudt = \int_{0}^{\infty} f(t) \int_{s}^{\infty} e^{-ut} dudt = \int_{0}^{\infty}\frac{1}{t}e^{-st} f(t) dt = \mathcal{L}\left\{ \frac{f(t)}{t} \right\})][14]


5.6. 합성곱(Convolution)[편집]


함수 [math(f, g)]가 주어졌을 때, Convolution [math(\left(f*g\right)\left(t\right))]를 [math(\displaystyle \int_{0}^{t}f\left(t-u\right)g\left(u\right)du)]로 정의한다.

이 convolution은 몇 가지 성질이 있는데 다음과 같다.
  1. [math(f*0 = 0 = 0*f)] (영원)
  2. [math(f*g = g*f)] (교환법칙)
  3. [math(f*(g+h) = f*g + f*h)] (분배법칙)
  4. [math(f*(g*h) = (f*g)*h)] (결합법칙)

특히 중요한 것은 아래 정리로, 라플라스 역변환을 할 때 자주 쓰인다.

정리: [math(\mathcal{L}\left\{f*g\right\} = \mathcal{L}\left\{f\right\}\times \mathcal{L}\left\{g\right\})]

예시: [math(\displaystyle \frac{1}{\left(s^2+1\right)^2} = \mathcal{L}\left\{\sin t \right\}\times \mathcal{L}\left\{ \sin t \right\} = \mathcal{L}\left\{(\sin *\sin) t \right\})]

[math(\displaystyle \mathcal{L}^{-1} \left\{\frac{1}{ \left(s^2+1\right)^2} \right\} = \int_{0}^{t}\sin\left(t-u\right)\sin u du = \frac{\sin t-t\cos t}{2})]

증명
좌변 = [math(\displaystyle \int_{0}^{\infty}e^{-st}\int_{0}^{t} f(t-u) g(u) dudt = \int_{0}^{\infty}\int_{u}^{\infty}e^{-su}g(u) e^{-s(t-u)} f(t-u) dtdu = \int_{0}^{\infty}e^{-su}g(u) \int_{u}^{\infty}e^{-s(t-u)} f(t-u) dtdu)] [15]
[math(\xi = t-u)]라 치환하면, [math(\displaystyle \int_{0}^{\infty}e^{-su} g(u) \int_{0}^{\infty}e^{-s\xi} f(\xi) d\xi du)] = 우변


5.7. 역변환[편집]


함수 [math(f)]의 라플라스 변환이 [math(g)]라고 하면, 다음이 성립한다.
[math(f(t)=\displaystyle \frac{1}{2\pi i} \int_{\sigma -i\infty}^{\sigma+i\infty}g(s)e^{st}ds)]
이 공식을 직접 사용할 일은 거의 없으며, 부분분수분해를 한 다음 변환표를 이용해서 푸는 경우가 대다수다.


파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-11-25 03:45:48에 나무위키 라플라스 변환 문서에서 가져왔습니다.

[1] 선형대수학에서의 선형 변환(linear transformation), 맵핑과 똑같다! 실제로 라플라스 변환을 공부할 때 라플라스 변환은 선형 연산(linear operation) 가능하다고 나올 것이다.[2] second order differential equation. [3] 푸리에-멜린 적분 변환이라고도 한다. [4] 실용적인 목적에도 이쪽이 더 낫다. 라플라스 역변환은 이론적인 토대를 제공할 뿐이지, 실제로 계산하기에는 애로사항이 많다.[5] 실수부를 [math(0)]으로 만들면 푸리에 변환이 되는데, 이는 감쇄하지 않는 진동운동을 의미한다.[6] 진짜로 간단해진다. 본래 식이 간단하면 라플라스 쓰지 말고 그냥 푸는 게 빠르다.[7] 라플라스 변환은 선형 연산자(linear operator)이다. 따라서 선형 연산이 성립하지 않는 비선형 미분방정식에 대해서는 적용할 수 없다.[8] 풀이가 존재하는 베르누이 미분방정식같은 경우[9] 수학과가 아니라면 이 모든 계산을 다 할 필요는 없다.[10] 단위 충격 함수라고도 한다.[11] 디랙 델타 함수의 부정적분. 헤비사이드 계단 함수라고도 한다.[12] 적분 구간이 0부터 무한대이기 때문에 [math(u(x))]이든 [math(x)]든 상관이 없다. 다른 말로 임의의 [math(f)]나 0이나 양수일때 [math(f)]이고 음수일때 다른 함수이어도 라플라스 변환은 같다는 뜻이다.[13] [math(a\neq0)]일경우. 또한 극한값이 존재한다는 것도 따로 보여야 한다[14] 푸비니의 정리를 사용한다.[15] 적분 순서의 변경과 푸비니의 정리 사용