무차원량

덤프버전 :

분류



이 문서는 나무위키의 이 토론에서 @합의사항1@(으)로 합의되었습니다.
타 위키에서의 합의내용이 더위키에서 강제되지는 않지만 문서를 편집하실때 참고하시기 바랍니다.


토론 합의사항

[ 펼치기 · 접기 ]
* 분야에 따라 수용액의 밀도를 [math(\rm1\,g/mL)]로 근사하여 [math(\rm ppm)]과 [math(\rm mg/L)]를 같은 단위로 사용하고 있다는 사실과 이에 대한 구체적인 설명(수식 등)을 서술함. * 국제단위계에 의하면 [math(\rm ppm)]과 [math(\rm mg/L)]는 과학적으로 다른 단위이고 혼용할 수 없는 단위임을 서술함.(단, '일반적으로 두 단위를 혼용하는 것'이 옳고 그른지는 서술하지 않는다)



과학 연구 · 실험
Scientific Research · Experiment

[ 펼치기 · 접기 ]
배경
과학적 방법
수학(미적분학 · 선형대수학) · 통계학
연구·탐구
논증(귀납법 · 연역법 · 유추(내삽법 · 외삽법)) · 이론(법칙 · 공리 · 증명 · 정의 · 근거이론 · 이론적 조망) · 가설 · 복잡계(창발) · 모형화(수학적 모형화) · 관측 · 자료 수집 · 교차검증 · 오컴의 면도날 · 일반화
연구방법론
합리주의 · 경험주의 · 환원주의 · 복잡계 연구방법론 · 재현성(연구노트)
통계적 방법
혼동행렬 · 회귀분석 · 메타분석 · 주성분 분석 · 추론통계학(모형(구조방정식) · 통계적 검정 · 인과관계와 상관관계 · 통계의 함정 · 신뢰도와 타당도)
측정·물리량
물리량(물리 상수 · 무차원량) · 차원(차원분석) · 측도 · 단위(단위계(SI 단위계 · 자연 단위계) · 단위 변환) · 계측기구 · 오차(불확도 · 유효숫자)
실험
실험설계 · 정성실험과 정량실험 · 실험군과 대조군 · 변인(독립 변인 · 조작 변인 · 종속 변인 · 변인 통제) · 모의 실험(수치해석) · 맹검법 · 사고실험 · 인체실험 · 임상시험 · 실험 기구
연구윤리
뉘른베르크 강령 · 헬싱키 선언 · 연구투명성 · 연구동의서 · 연구 부정 행위 · 표절(표절검사서비스) · 편향 · 문헌오염 · 자기교정성 · 연구윤리위원회
논문·과학 공동체
소논문 · 리포트 · 논문제출자격시험 · 연구계획서 · 형식(초록 · 인용(양식 · 참고문헌) · 감사의 글) · 저자 · 학회 · 세미나 · 학술대회 · 동료평가 · 지표 · 학술 데이터베이스 · 게재 철회 · 학제간 연구
철학 관련 정보 · 연구방법론 관련 정보 · 수학 관련 정보 · 자연과학 관련 정보 · 물리학 관련 정보 · 통계 관련 정보 · 사회과학 조사연구방법론



1. 개요
2. 특징
3. 예시
3.1. 수학 상수
3.2. 로가리듬(Logarithm)
3.3. 계수량(counting quantity)
3.6. 학문 분야에 따른 무차원량
3.6.2. 광학
3.6.3. 물리화학
3.6.4. 생물학
3.6.5. 소립자 물리학
3.6.6. 약리학
3.6.7. 역학
3.6.8. 유체역학, 열 및 물질전달
3.6.9. 일반화학
3.6.10. 재료공학
3.6.11. 전자기학
4. 관련 문서


1. 개요[편집]


무차원량(, dimensionless quantity)은 도량형학(metrology)에서 쓰이는 용어로, 차원 분석 시 모든 차원의 지수가 [math(0)]이 되는 물리량을 가리킨다. 수학적으로 곱셈·나눗셈항등원이므로 차원 기호는 [math(\sf 1)]로 나타낸다.

물리량은 수와 단위의 곱으로 이루어져있으므로 단위가 없는 수학 상수들은 [math(1)]이라는 단위가 곱해진 물리량으로 간주할 수 있어 무차원량이며, 단위는 미지수의 계수 [math(1)]을 생략해서 나타내듯이 [math(1)]이 생략된 물리량으로 간주할 수 있으므로 차원이 없는 단위 역시 무차원량이다.

기하학의 성질인 공간을 나타내는 측도로써의 차원과는 의미가 많이 다르다.

2. 특징[편집]


어떤 물리량 [math(Q)]의 차원 [math(\dim Q)]는 7가지의 기본 차원(base dimension), 즉 길이([math(\sf L)]), 질량([math(\sf M)]), 시간([math(\sf T)]), 전류([math(\sf I)]), 온도([math(\sf\Theta)]), 물질량([math(\sf N)]), 광도([math(\sf J)])를 각각 밑으로 하는 지수의 곱으로 나타낼 수 있다. 즉
[math(\dim Q = {\sf L}^\alpha{\sf M}^\beta{\sf T}^\gamma{\sf I}^\delta{\sf\Theta}^\epsilon{\sf N}^\zeta{\sf J}^\eta)]
[math(Q)]가 2가지 이상의 물리량의 곱셈·나눗셈으로 이루어져 있을 경우 그 차원 역시 똑같은 연산의 영향을 받으므로 [math(\dim Q)]의 식에서 각 차원의 차수가 어떻게 되는지를 수학적으로 계산할 수 있다. 이를 차원분석(dimensional analysis) 또는 차원 해석이라고 하는데 계산 결과 모든 차원의 지수가 [math(0)]이면 [math(Q)]는 '무차원량'이라고 한다.

단, 이들 기본 차원으로 나타낼 수 없거나 차원 분석이 불가능한 단위들(특히 셈 측도에 해당하는 것들[1])은 통상적으로 무차원량으로 약속한다.


3. 예시[편집]



3.1. 수학 상수[편집]


[math(1)], 원주율 [math(\pi)], 자연로그의 밑 [math(e)]을 포함한 모든 수학 상수는 무차원량이다. 심지어 허수 단위 [math(i)]를 포함한 사원수의 다른 허수 단위 [math(j)], [math(k)]도 무차원량이며 이를 확장한 체계의 다른 단위들 역시 무차원량이다.


3.2. 로가리듬(Logarithm)[편집]


로가리듬은 지수의 역함수, 즉 지수함수의 지수에 해당하기 때문에 항상 무차원량이다. 따라서 이들 수식을 바탕으로한 단위 역시 모두 무차원량이다. 거꾸로 지수의 결과값 역시 무차원량이기 때문에 각 로가리듬의 정의역에는 무차원량이 대입돼야 한다.
  • 네퍼 [math(\rm Np)] - 분율에 자연로그를 취한 것의 단위.
  • 데시벨 [math(\rm dB)] - 분율에 상용로그를 취한 것의 단위. 벨([math(\rm B)])의 [math(1/10)].
  • [math(\rm pH)] - 수소 이온의 활동도의 역수에 상용로그를 취한 것. 이 밖에도 [math(\rm pOH)], 산이온화상수 [math({\rm p}K_a)], 염기이온화상수 [math({\rm p}K_b)], 등전점 [math(\rm pI)] 등 로가리듬을 이용한 모든 물리량 포함.


3.3. 계수량(counting quantity)[편집]


  • 개수를 세는 데에 관련된 단위들은 모두 무차원량이다. 자세한 것은 셈 측도 참조.
  • 분자생물학에서 핵산의 염기 개수를 나타내는 베이스([math(\rm b)]) 혹은 염기쌍의 개수를 나타내는 베이스페어([math(\rm bp)]).
  • 양자역학에서의 축퇴(degeneracy).


3.4. 분율[편집]



파일:CC-white.svg 이 3.3의 내용 중 전체 또는 일부는
문서의 r52 판{{{#!wiki style="display: inline; display: 3.3.1;"
, 3.3.1번 문단}}}에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 3.3의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r52 판{{{#!wiki style="display: inline; display: 3.3.1;"
, 3.3.1번 문단}}} (이전 역사)
문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)



파일:나무위키상세내용.png   자세한 내용은 분율 문서를 참고하십시오.

단위가 같은 두 물리량의 이기 때문에 분율에 속하는 모든 물리량은 무차원량이다.
  • % - 전체를 [math(100)]으로 놓았을 때의 비율.
  • - 전체를 [math(1\,000)]으로 놓았을 때의 비율.
  • - 전체를 [math(10\,000)]으로 놓았을 때의 비율.
  • ppm, ppb, ppt - %, ‰을 확장한 개념으로 [math(\rm1\,ppm)]은 전체를 [math(10^6 = 100)]만으로 놓았을 때의 비율을 의미하며 [math(\rm ppb)], [math(\rm ppt)]는 국가에 따라 그 의미가 다르다. milliard, billiard가 포함된 소위 long scale 체계를 쓰는 나라[2]에서는 [math(\rm1\,ppb = 1/10^{12})](1조분의 1), [math(\rm1\,ppt = 1/10^{18})](100경분의 1)을 의미하지만 milliard, billiard가 없는 소위 short scale 체계를 쓰는 나라[3]에서는 [math(\rm1\,ppb = 1/10^9)](10억분의 1), [math(\rm1\,ppt = 1/10^{12})](1조분의 1)을 의미한다. 이 때문에 국제단위계에서는 [math(\bf ppb)], [math(\bf ppt)]의 사용을 허용하지 않는다.
단, 분야에 따라 [math(\rm ppm)]을 무차원이 아닌 밀도의 단위([math(\rm\textμg/mL = mg/L = g/m^3)] 등)로 사용하는 경우가 있다. 국제단위계의 정의에 의하면 둘은 혼용될 수 없지만, 묽은 수용액을 다루는 상황에서는 물의 밀도를 [math(\rm1\,g/mL)]로 근사할 수 있으므로 [math({\rm\textμg/mL}\approx{\rm\textμg/g} = 10^{-6} = {\rm ppm})], 즉 [math(\rm ppm)]과 [math(\rm\textμg/mL)]을 동일한 단위으로 쓰는 것이므로 데이터를 읽을 때 주의를 요한다.

3.5. , 입체각[편집]


  • 라디안([math(\rm rad)]) - 반지름에 대한 호의 길이의 비로 나타낸 평면각의 단위.
  • 스테라디안([math(\rm sr)]) - 반지름 제곱에 대한 구 표면의 넓이 비로 나타낸 입체각의 단위.
사실 평면각은 '회전'(turn)을 단위로 하여 나타낼 수도 있는데 회전이 무차원의 단위이기 때문에 평면각 자체가 무차원량이다. 라디안은 이를 수학적으로 더 엄밀하게 나타낸 표현에 불과하다. 입체각은 평면각의 제곱과 같으므로 입체각 역시 그 자체로 무차원량이며 이를 엄밀하게 정의한 것이 스테라디안이다.


3.6. 학문 분야에 따른 무차원량[편집]


  • 자연 단위계에서 다루는 모든 물리량[4]


3.6.1. 경제학[편집]


  • 대체탄력성 [math(\rho)]


3.6.2. 광학[편집]




3.6.3. 물리화학[편집]


  • 이온화도 [math(\alpha)]
  • 활동도 [math(a)]
  • 활동도 계수 [math(\gamma)]
  • 화학 반응의 모든 평형상수 [math(K)]


3.6.4. 생물학[편집]




3.6.5. 소립자 물리학[편집]




3.6.6. 약리학[편집]




3.6.7. 역학[편집]


  • 반발계수 [math(e)] - 충돌 전후 상대속도의 비율.


3.6.8. 유체역학, 열 및 물질전달[편집]


무차원 수가 넘쳐난다. 자세한 내용은 전공서적을 참고 바란다.
  • 레이놀즈 수 [math(\rm Re)] - 유체의 관성력과 점성력의 비율. 두 물리량의 단위는 [math(\rm Pa = kg/(m{\cdot}s^2))]이다.
  • 레일리 수 [math({\rm Ra}_x)] - 확산에 의한 열 전달 속도와 대류에 의한 열 전달 속도의 비율.
  • 마하 수 [math(\rm Ma)] - 음속에 대한 유체 흐름의 속도 비.
  • 프루드 수 [math(\rm Fr)] - 중력/관성력
  • 웨버 수 [math(\rm We)]
  • 프란틀 수 [math(\rm Pr)] - 운동량 확산률과 열확산률의 비, 유체의 특성으로 유체의 종류와 유체의 온도에 의해 달라지며 대류열전달계수를 계산하는 데 사용된다.


3.6.9. 일반화학[편집]




3.6.10. 재료공학[편집]




3.6.11. 전자기학[편집]




4. 관련 문서[편집]




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-11-28 12:14:27에 나무위키 무차원량 문서에서 가져왔습니다.

[1] 제외. 몰은 셈 측도이지만 차원이 [math(\sf N)]이다.[2] 유럽 등[3] 미국 등[4] [math(E = m)]같은 괴악한 수식을 쓸 수 있는 것도 사실 에너지([math(E)])와 질량([math(m)])이 엄밀하게는 무차원량으로 규격화된(즉, 단위가 없는) [math(E_{\rm N})], [math(m_{\rm N})]이기 때문이다.(무엇으로 규격화됐는지는 사용하는 단위계에 따라 다르다. 자세한 것은 자연 단위계 참조) 그러나 자연 단위계를 쓰는 대부분의 학자들은 이 표기가 매우 번거롭기 때문에 규격화 표기를 생략한다.