세로셈법

덤프버전 :



1. 개요
2. 목록
2.1. 나눗셈의 세로셈법(장제법)
2.2. 개방법
2.2.1. 개평법
2.2.1.1. 원리
2.2.1.2. 방법
2.2.2. n제곱근(n≥3)
2.3. 도표적분법
2.3.1. 교환법칙
2.3.2. 미분열이 상수가 되지 않는 경우


1. 개요[편집]


수학에서 수식을 세로 방향으로 전개해서 풀이하는 일련의 과정을 말한다. 분야에 따라 다른 이름으로 불리기도 한다. 일반적으로 '세로셈법'이라 하면 나눗셈의 세로셈법을 가리킨다.

공통적으로 복잡한 계산을 빠르게 풀 수 있게 하는 도구라는 특징이 있다.

2. 목록[편집]



2.1. 나눗셈의 세로셈법(장제법)[편집]


[math(\begin{array}{r} \begin{array}{r}\\ \div 120~\big) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \!\!\:\!\!\!\!\! \begin{array}{r}3.541\dot6 \\ \hline 425\qquad\; \\ 360\qquad\; \\ \hline 65\;0\quad~~ \\60\;0\quad~~ \\ \hline 5\;00\quad \\4\;80\quad \\ \hline200~~ \\ 120~~ \\ \hline{\color{red}80}0 \\ 720 \\ \hline{\color{red}80} \end{array} \end{array})]
초등학교 수학에서 나눗셈을 이렇게 계산했을 것이다.

위 세로식에서 안쪽의 수는 나눠질 수(피제수)를, 왼쪽에는 나눌 수(제수)를 쓰고 아래로 쭉 계산해서 내려가면서 그 몫을 맨 위에 쓰는 방식이다.[1] 아무리 해도 나누어떨어지지 않을 경우, 숫자가 반복되는 구간을 짚어서 그 끝부분에서 끊은 뒤, 그 숫자 위에 점 혹은 윗줄을 그어주면 된다.

그러나 중학교 수학으로 올라가면 저렇게 계산하는 일이 없는데, 분수(정확히는 유리수)로 퉁쳐버리기(...) 때문이다.

그러다가 다시 고등학교 수학으로 올라가 다항식의 사칙연산을 할 때 세로셈법이 잠시 등장하며, 대학교 과정에서 시계 산술이 적용되는 유한체의 나눗셈에서 세로셈법이 다시 등장한다.

2.2. 개방법[편집]


[[대수학|대수학

Algebra
]]

틀 색상에 대한 토론이 진행중입니다. #
[ 펼치기 · 접기 ]
이론
기본 대상
연산 · 항등식(가비의 이 · 곱셈 공식(통분 · 약분) · 인수분해) · 부등식(절대부등식) · 방정식(풀이 · (무연근 · 허근 · 비에트의 정리(근과 계수의 관계) · 제곱근(이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술(시계 산술)
수 체계
자연수(소수) · 정수(음수) · 유리수 · 실수(무리수(초월수) · 초실수) · 복소수(허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group)
대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring)
아이디얼
체(field)
갈루아 이론 · 분해체
대수
가환대수 · 리 대수 · 불 대수(크로네커 델타)
마그마·반군·모노이드
자유 모노이드 · 가환 모노이드
선형대수학
벡터 · 행렬 · 텐서(텐서곱) · 벡터 공간(선형사상) · 가군(Module) · 내적 공간(그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론
함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 층 이론(층들) · 토포스 이론 · 타입 이론
대수기하학
대수다양체 · 스킴 · 사슬 복합체(에탈 코호몰로지) · 모티브
대수적 정수론
타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학
스펙트럼 정리
표현론
실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재





각종 근호를 산술적으로 계산하는 방법으로 단순히 개법(開法)또는 개방(開方)이라고도 한다. 한자어로 제곱은 평방(平方), 세제곱은 입방(立方)이라고 하며 [math(n)]제곱을 통틀어 방(方)이라고 하기 때문에 방을 푼다(開)는 뜻에서 이런 이름이 붙었다. 특별히 제곱근, 세제곱근은 각각 개평법(開平法), 개립법(開立法)이라고도 불린다.
제곱근시행착오법으로 구하다보면 [math(k)]개의 유효숫자를 구하는데 [math(k)]자리수끼리의 곱셈을 여러번 해야 한다. 이는 매우 귀찮은 작업일 뿐더러 손계산으로는 시간이 매우 많이 걸리기 때문에 이를 피하기 위하여 개발된 방식이다. 원리는 이항정리를 이용하는 것으로, 임의의 [math(n)]제곱근에 얼마든지 적용할 수 있다. 그러나 개평법을 제외하고는 어디까지나 컴퓨터를 이용한 알고리즘의 영역이며 [math(n=3)]만 돼도 손계산 역시 매우 버거워진다. 손계산이 어느 정도 가능한 방법은 개평법이 유일하다.


2.2.1. 개평법[편집]



2.2.1.1. 원리[편집]

근본적으로 곱셈 공식
[math((a+b)^2 = a^2 + 2ab + b^2)]
에서 [math(a^2)]을 이항한
[math((a+b)^2 - a^2 = (2a + b)b)]
를 이용한다. [math(\sqrt{15.251})]를 예로, 하나씩 넣어보기가 [math((3 + b)^2 \le 15.251)]인 최대의 [math(b)]를 찾는 방법이라면, 개평법은 우선 [math(a^2 = 9)]를 양변에서 빼서
[math((2a + b)b = (3\times2 + b)b \le 6.251)]
의 꼴로 만들고 [math(3.1)], [math(3.2)], …등은 모두 [math(3 + 0.1x)]꼴, 즉 [math(b = 0.1x)]이므로 양변에 [math(100)]을 곱해
[math(100(3\times2 + 0.1x)0.1x = (3\times20 + x)x \le 625.1)]
로 바꿔준 뒤 [math(10)]미만의 최댓값 [math(x)]를 찾는 것이다.
만약 [math(x)]가 자연수로 딱 떨어지지 않고 소수가 된다면 자연수 [math(y)], [math(0<z<10)]인 유리수 [math(z)]를 이용하여 [math(x = y + 0.1z)]로 나타낼 수 있으므로
[math(\begin{aligned}(3\times20 + x)x &= (3\times20 + y + 0.1z)(y + 0.1z) \\ &= (3\times20 + y)y + (3\times20 + 2y + 0.1z)0.1z \le 625.1\end{aligned})]
가 되는데 [math((3\times20 + y)y)]는 자연수이므로 양변에서 빼면
[math((3\times20 + 2y + 0.1z)0.1z \le 625.1 - (3\times20 + y)y)]
가 되고 [math(3\times10 + y = a')]라 놓으면 위 부등식은 [math((2a' + 0.1z)0.1z \le 625.1 - (3\times20 + y)y)]가 되어 맨 처음에 이용했던 [math((2a + 0.1x)0.1x \le 6.251)]와 완전히 같은 꼴이 된다.
이 말은 곧 [math(x)]값을 소수 아래 자리까지 정확하게 찾으려고 애쓸 필요가 없으며 적당히 부등식을 만족하는 최대의 자연수를 구한 뒤 부등식의 양변에서 뺀 다음 다시 100을 곱하고 부등식을 만족하는 최대의 자연수를 찾고……하는 식으로 반복해나갈 수 있음을 의미한다.
이는 앞의 방법에 비하면 계산량이 차원이 다르다. (실제로 대략 [math(\mathcal{O}(k^2))]에서 [math(\mathcal{O}(k))]가 된 것이다.)

2.2.1.2. 방법[편집]

방법은 설명했으니 예시로 313.29의 제곱근을 구해보자. 개평법을 쓸 때에는 다음과 같이 피개평수에서 빼는 연산을 위한 열과(이하 뺄셈 열), 빼기 위한 수를 계산하기 위한(상술한 [math(2a+b)]를 계산하는) 열(이하 덧셈 열) 2줄을 준비해놓는 것이 좋다. 아래 식에서 왼쪽 단이 덧셈 열이고 오른쪽 단이 뺄셈 열이다.
  1. [math(\begin{array}{l|r} \begin{array}{lr}& \\ \end{array} & \begin{array}{l}\sqrt{3{\color{red}|}13.{\color{red}|}29}\end{array} \end{array})]
313.29를 소수점을 기준으로 2자리씩 끊어준다.[2] 이는 원래의 수를 100으로 나누고 곱해 두자리 정수만 남기고 소수점 아래를 버린것과 같다.
  1. [math(\begin{array}{l|r} \begin{array}{lr}& \\ \end{array} & \begin{array}{l}\quad1\\ \sqrt{3{\color{red}|}13.{\color{red}|}29}\end{array} \end{array})]
제곱을 했을 때 맨 앞 숫자를 넘지 않는 최대의 자연수의 제곱수 [math(a^2)]을 구한다.[3] [math(a)]가 곧 해의 첫 번째자리의 수가 된다. 이 경우 맨 앞 숫자가 [math(3)]이므로 [math(1(=1^2)\le3<4(=2^2))]에서 [math(a=1)]이다.
  1. [math(\begin{array}{l|r} \begin{array}{lr}& \\ & 1 \\ +) & 1\\ \hline & 2 \end{array} & \begin{array}{l}\quad1 \\ \sqrt{3{\color{red}|}13.{\color{red}|}29} \\ \quad1 \\ \hline \quad 2\;13 \\\end{array} \end{array})]
맨 앞 숫자에서 [math(a^2)]을 빼고 그 다음 2자리의 수를 내려적는다.[4] 이는 원래의 수에서 [math(a^2)]을 빼고 100을 곱한 것과 같다. 이와 동시에 다음 뺄 수를 계산하기 위해 덧셈 열에 [math(2a)]를 기록한다.
  1. [math(\begin{array}{l|r} \begin{array}{lr}& \\ & 1~~\\ +) & 1~~\\ \hline & 2{\color{red}7} \\ +) & {\color{red}7} \\ \hline & 34 \end{array} & \begin{array}{l}\quad1\;~~{\color{red}7}. \\ \sqrt{3{\color{red}|}13.{\color{red}|}29} \\ \quad1 \\ \hline \quad 2\;13 \\ \quad 1\;89 \\ \hline \quad ~~\;24\;\;29 \end{array} \end{array})]
앞서 [math(a^2)]을 빼고 100을 곱했으므로 [math(100(2a+b)b = 100(2a+0.1x)0.1x = (20a+x)x)]가 뺄셈 열의 결과값보다 크지 않은 최대의 수, 즉 제곱근의 두 번째자리 수를 구한다. 이 경우 [math(189(=27\times7)\le213<224(=28\times8))]이므로 [math(x=7)]이 된다. [math((20a+x)x)]를 뺄셈 열의 결과값에서 뺀 뒤 다음 2자리 수를 내려 적는다.
덧셈 열에는 [math(20a+x)]와 [math(x)]를 더한 [math(2(10a+x))]를 새로운 [math(2a)]로 놓고 계산을 반복한다.
  1. [math(\begin{array}{l|r} \begin{array}{lr}& \\ & 1~~~~\\+) & 1~~~~\\ \hline & 27~~ \\+) & 7~~ \\ \hline & 34{\color{red}7} \\ & {\color{red}7} \\ ~\end{array} & \begin{array}{l}\quad1\;~~7.\;~~{\color{red}7} \\ \sqrt{3{\color{red}|}13.{\color{red}|}29} \\ \quad1 \\ \hline \quad 2\;13 \\ \quad 1\;89 \\ \hline \quad~~ \;24\;\;29 \\ \quad~~ \;24\;\;29 \\ \hline \quad~~ \;~~~~\;\;~~0 \end{array} \end{array})]
최종적으로 뺄셈 열에서 0이 나오면 제곱근 구하기를 완료한 것이다. 루트안의 수가 무한소수거나 자리수를 나눌때 [math(m)]개로 나누었는데 (313.29의 경우 [math(3|13.|29)]로 3개) 루트를 [math(m)]자리까지 구해도 안끝나는 경우는 루트자체가 무한소수이므로 적절한 유효숫자에서 끝내면 된다.

예시는 딱 유한소수로 끝나는 수를 가져왔지만 이 방법은 제곱근이 무리수가 나와도 원하는 유효숫자까지 계속 구해나갈 수 있다.
앞서 [math(\sqrt{15.251})]를 개평법으로 계산해보면
[math(\begin{array}{l|r} \begin{array}{lr}& \\ & 3\qquad\quad\\+) & {\color{red}3}\qquad\quad\\ \hline & 69\qquad~~\\+) & {\color{red}9}\qquad~~\\ \hline & 780\qquad\\ +) & {\color{red}0}\qquad\\ \hline & 7805\quad~~\\ +) & {\color{red}5}\quad~~\\ \hline & 78102\quad\\ +) & {\color{red}2}\quad\\ \hline & 781045~~\\ +) & {\color{red}5}~~\\ \hline & 7810502\\ & {\color{red}2}\end{array} & \begin{array}{l}\quad~~{\color{red}3.~~\;9\;~~0\;~~5\;~~2\;~~5\;~~2\;} \\ \sqrt{15.{\color{red}|}25{\color{red}|}10{\color{red}|}00{\color{red}|}00{\color{red}|}00{\color{red}|}00} \\ \quad~~9 \\ \hline \quad~~6\;\;25 \\ \quad~~6\;\;21 \\ \hline \qquad~~\;\;4\;10 \\ \qquad\;\;~~\;\quad0 \\ \hline \qquad~~\;\;4\;10\;00 \\ \qquad~~\;\;3\;90\;25 \\ \hline \qquad~~\;\;~~\;19\;75\;00 \\ \qquad\quad\;\;\;15\;62\;04 \\ \hline \qquad\quad\;\;\;~~4\;12\;96\;00\\ \qquad\quad\;\;\;~~3\;90\;52\;25\\ \hline \qquad\qquad\;\;\;\;22\;43\;75\;00 \\ \qquad\qquad\;\;\;\;15\;62\;10\;04\end{array} \end{array})]
로 무한히 이어져나가는 것을 볼 수 있다. 제곱근의 유효숫자 표기법에 따라 나타내면 근삿값은 약 3.90525가 된다.


2.2.2. n제곱근(n≥3)[편집]


[math(n)]제곱근부터는 개평법에 비해 계산량이 폭발적으로 늘어난다. 개립법에서는 똑같이 피개립수를 적절하게 [math(1000^k)]으로 나누고 곱하기를 반복하면서 자연수 [math(a)], [math(b)]에 대해 [math((a+0.1b)^3)]을 찾아나가는 과정은 똑같은데, 뺄셈 열에서 빼야 하는 수는 [math(1000\left\{(a+0.1b)^3 - a^3\right\} = 300a^2b + 30ab^2 + b^3 = \mathord{\left(300a^2 + 30ab + b^2\right)}b)]가 된다. 덧셈 열로 쓰던 단도 개립법부터는 덧셈 열로서의 의미를 상실하여 사실상 곱셈 열이 되며(아래 예시 참조) 앞서 개평법에선 먼저 구했던 수를 2배하고 [math(b)]를 붙여주고 곱하는 것으로 끝이었다면, 이제는 구해야 하는 수의 지수가 포함된 식에 하나하나 대입하면서 계산해야하는 상황이 된 것이다. 이쯤 되면 최대 결과값을 손으로 계산하는 것보다 계산기를 쓰는 게 차라리 나은 수준이 되는데 요즘 웬만한 공학계산기 및 계산기 어플에서는 [math(n)]제곱근을 지원하기 때문에(……) 개립법부터는 그냥 계산기를 쓰는 게 차라리 낫다.
예시로 [math(\sqrt[3]3)]을 개립법으로 유효숫자 4자리까지 구해보면 다음과 같다. 곱셈 열(왼쪽 단)에서 [math(f(a,\,x) = 300a^2 + 30ax + x^2)]이며 [math(a)]에 들어갈 수는 이전 결과까지 구한 해의 숫자를 나열한 것이다.
[math(\begin{array}{l|r}
\begin{array}{lrr}& & \\ & 1 & \\ \times) & {\color{red}1} & \longrightarrow \\ & f({\color{red}1},\,4)= 436 & \\ \times) & {\color{red}4} & \longrightarrow \\ & f({\color{red}14},\,4) = 60496 & \\ \times) & {\color{red}4} & \ \longrightarrow \\ & f({\color{red}144},\,2) = 6229444 & \\ \times) & {\color{red}2} & \longrightarrow \\ & f({\color{red}1442},\,2) = 623817844 & \\ \times) & {\color{red}2} & \longrightarrow \end{array} &
\begin{array}{l}~\;{\color{red}1.\quad\;4\;\quad4\;\quad2\;\quad2} \\ \sqrt[3]{3.{\color{red}|}000{\color{red}|}000{\color{red}|}000{\color{red}|}000} \\ ~\;1 \\ \hline ~\;2\;\;000 \\ ~\;1\;\;744 \\ \hline \quad~\;\;\;256\;000 \\ \quad~\;\;\;241\;984 \\ \hline \quad~\;\;\;14\;016\;000 \\ \quad~\;\;\;12\;458\;888 \\ \hline \qquad~\;\;\;1\;557\;112\;000 \\ \qquad~\;\;\;1\;247\;635\;688\end{array}
\end{array})]
따라서 [math(\sqrt[3]3 \fallingdotseq 1.442)]가 된다.


2.3. 도표적분법[편집]


Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리




부분적분을 연쇄적으로 해야 하는 경우, 도표적분법(tabular integration)을 통해서 좀 더 빨리 부분적분을 계산할 수 있다. 이는 '부분적분 세로셈'이라고도 하며, 영어로는 미분을 뜻하는 differentiation과 적분을 뜻하는 integral의 머리글자를 따 DI method라고 하며, tic-tac-toe method라고도 한다.

정적분은 부정적분으로 바꾸어서 계산하고 나중에 정적분으로 계산한다.

파일:attachment/부분적분/부분적분세로셈.png

부분적분 세로셈은 [math(f'(x)=c)](상수)가 되면 [math(f'(x))]가 적분 기호 밖으로 나올 수 있다는 점을 이용한다.[5] 표의 왼쪽 열은 미분하는 열이고, 오른쪽 열은 적분하는 열이다. 위의 우선순위에 의해 미분열 맨 위에 미분하려는 함수([math(f(x))])를 적고, 적분열 맨 위에 적분하려는 함수([math(g'(x))])를 적는다. 그 후 미분열 아래로 계속 미분을 하고, 적분열 아래로는 계속 적분하여 내려간다. 그러다가 미분열에 적힌 함수가 상수가 되면 맨 왼쪽에 행마다 +, -, +, -를 반복하여 부호를 붙인다. 그 아래로 적분을 한 번 더 하여 하향 대각선 방향으로 함수를 곱한 뒤 그 결과를 더하면 된다.

파일:attachment/부분적분/예제1.png
파일:attachment/부분적분/예제2.png
부분적분을 한 번 쓴 경우
부분적분을 두 번 쓴 경우
위 그림처럼 부분적분을 두 번 연속해서 쓸 수도 있다. 마찬가지 방법으로 계속 아래로 내려가면 부분적분을 계속해서 쓸 수 있다.


2.3.1. 교환법칙[편집]


파일:attachment/부분적분/세로셈교환법칙.png

어떤 함수가 같은 행에 있다는 것은 이 부분적분 중간에 그 함수를 곱해서 적분하는 과정이 들어있다는 뜻이다. 따라서 같은 행에 한해서 왼쪽 열(미분열)과 오른쪽 열(적분열)의 교환법칙이 성립한다. 단, 이 과정을 아래줄에 적을 때 +, - 부호도 같이 유지된다는 점에 유의하자. 사실 상 같은 식을 두 번 적은 셈이니 하향 대각선으로 가는 곱도 함수교환 직전에는 하지 않는다.

파일:attachment/부분적분/예제3.png
파일:attachment/부분적분/예제4.png
부분적분을 한 번 쓴 경우
부분적분을 두 번 쓴 경우


2.3.2. 미분열이 상수가 되지 않는 경우[편집]


파일:attachment/부분적분/예제5.png

같은 행에 있는 함수는 곱하여 적분한 것을 뜻하므로, 하향 대각선으로 가다가 마지막에는 가로 일직선으로 곱해서 적분기호를 붙이면 된다. 이 때 적분기호를 빼먹지 않도록 하자.

[1] 나눗셈의 대상이 가 아닐 경우(쉽게 말하면 소수점 밑으로 내려가지 않는 경우) 오른쪽에 나머지를 써준다.[2] 이걸 잘못이해해서 뒤에서부터나 앞에서부터 끊다간 [math(\sqrt{123.456})]이나 [math(\sqrt{\dfrac19} = \sqrt{0.\dot1})] 따위를 구하기 곤란하다 물론 빈자리는 0으로 채우면 된다.[3] 수식으로 나타내면 맨 앞 숫자를 [math(\alpha)]라고 했을 때 [math(a^2 \le \alpha)][4] 맨 처음에 소수점을 기준으로 2자리씩 끊어준 이유가 바로 여기에 있다.[5] 물론 꼭 상수가 되어야만 세로셈을 쓸 수 있는 것은 아니다. 뒤의 항목 참조.

파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는
문서의 r193 판{{{#!wiki style="display: inline; display: 3.2;"
, 3.2번 문단}}}에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r193 판{{{#!wiki style="display: inline; display: 3.2;"
, 3.2번 문단}}} (이전 역사)
문서의 r191 판{{{#!wiki style="display: inline; display: 4;"
, 4번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-03 13:23:12에 나무위키 세로셈법 문서에서 가져왔습니다.