수열

덤프버전 :

파일:다른 뜻 아이콘.svg
은(는) 여기로 연결됩니다.
선형대수학에서 말하는 열(列)에 대한 내용은 행렬(수학) 문서
행렬(수학)번 문단을
행렬(수학)# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
참고하십시오.








Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리



1. 개요
2. 상세
2.1. 정의
2.1.1. 일반항
2.1.2. 수열의 표기
2.1.3. 부분열
2.4. 수열의 합
2.4.1. 여러 수열의 합
3. 주요한 수열들
4. 기타
5. 관련 문서



1. 개요[편집]


/ sequence

자연수 집합(또는 양의 정수 집합)을 정의역으로 갖는 함수. 쉽게 말하자면, 수를 늘어놓고 그것에 순번을 붙이는 것이다. 늘어놓는 규칙은 있어도 되고 없어도 된다.[1] 단, 난수열은 중등교육과정에서 큰 의미가 없기 때문에 주로 규칙적으로 나열된 수열들을 다룬다. 만약 수열의 정의역이 첫 [math(n)]개의 자연수이면 유한수열이라 하며, ([math(\left<1, 6, 3, 9\right>)], [math(\left<3, 4, 7\right>)] 등), 수열의 정의역이 자연수인 경우 무한수열이라 한다. ([math(\left<1, 2, 3, 4,\ldots\right>)], [math(\left<1, 3, 5, 7,\ldots\right>)] 등).

초등학교 수학에서는 뛰어 세기, 규칙과 대응 등으로 수열을 익히기 위한 첫걸음을 뗀다.


2. 상세[편집]



2.1. 정의[편집]


수열 [math(a)]이란 정의역이 순서수(ordinal number) [math(\alpha\in \bold{ON})]인 함수를 말한다.

[math(a:\alpha\to S)]

일반적으로 함수를 나타내는 기호는 주로 [math(f,g,h)]를 많이 쓰지만, 수열의 경우 [math(a,b,c)] 등을 주로 사용한다.

정의역이 유한 순서수([math(n)] 이하의 자연수의 집합)이면 유한수열, 가산 무한 순서수(자연수 집합)이면 무한수열이라고 하며, 일반적으로 순서수 [math(\alpha)]가 정의역이면 [math(\alpha-)]수열([math(\alpha-)]sequence)이라고 한다. 자연수 집합 뿐만 아니라, 순서수라면 자신의 원소를 정렬하여 나타낼 수 있기 때문에, 정의역이 비가산 무한 서수일 때도 수열이라고 할 수 있다. 이 문서는 물론 정의역이 가산집합일 때(유한수열과 무한수열) 위주로 작성되었다.[2]

공역이 정수이면 정수열, 유리수면 유리수열, 실수면 실수열, 복소수면 복소수열, 위상 공간이면 점렬, 함수 공간이면 함수열, 집합족이면 집합렬 등으로 부를 수 있다.

실함수에서 다변수 함수가 있듯 수열에서도 이중수열, 삼중수열 등을 정의할 수 있다.

[math(n)]개의 순서수 [math(\alpha_{1},\cdots,\alpha_{n})]에 대하여, [math(n)]중 수열은 정의역이 [math(\alpha_{1}\times\cdots\times\alpha_{n})]인 함수를 말한다.

[math(a:\alpha_{1}\times\cdots\times\alpha_{n}\to S)]

[math(n=2)]이고, [math(\alpha_{1})], [math(\alpha_{2})]가 모두 유한 순서수이면, 함수 [math(A:\alpha_{1}\times\alpha_{2}\to S)]를 행렬이라고 한다. 무슨 말이냐면, [math((i,j)\in\alpha_{1}\times\alpha_{2})]에 대응하는 항을 [math(i)]행 [math(j)]열의 성분으로 적으면 된다.


2.1.1. 일반항[편집]


수열의 항은 정의역의 특정한 원소에 대응하는 함수값을 의미한다. 수열의 일반항은 수열의 함수식을 뜻한다. 즉, 정의역의 원소와 그에 대한 함수값의 관계를 식으로 표현한 것이다. 일반적으로 수열의 일반항의 독립변수는 [math(x)]대신 [math(n)], [math(m)], [math(k)], [math(i)], [math(j)], [math(l)] 등을 주로 사용한다. 예를 들어서, 무한수열 [math(a:\mathbb{N}\to\mathbb{R})]의 일반항이 [math(a_{n}=2n-1)]로 주어지면 [math(a)]의 3번째 항은 [math(a_{3}=5)]가 된다.


2.1.2. 수열의 표기[편집]


수열 [math(a)]의 항이 [math(a_{1},a_{2},a_{3}\ldots)]으로 주어졌을 때, 이를 나열하여 수열 [math(a_{1},a_{2},a_{3},\ldots)]이라고 쓰기도 한다. 혹은 괄호 [math((,))] 또는 [math(\langle, \rangle)]등을 사용하여 [math((a_{1},a_{2},a_{3},\ldots))] 또는 [math(\langle a_1, a_2, \ldots\rangle)]로 나타내기도 한다.

수열의 일반항 [math(a_{n})]이 주어지면 [math((a_{n}))], [math(\langle a_{n}\rangle)], [math(\{a_{n}\})] 등으로 나타내기도 하고, 여기에 아랫첨자와 윗첨자를 추가하여 정의역까지 나타내는 표기법도 있다. 예를 들어서 [math((2^{n}-1)_{n=0}^{\infty})]는 일반항이 [math(a_{n}=2^{n}-1)]이고 [math(n=0)]부터 시작하는 무한수열이다.


2.1.3. 부분열[편집]


수열 [math(a:\alpha\to S)]에 대하여, [math(\beta\subseteq\alpha)]인 [math(\beta)]에 대하여, 수열 [math(k:\beta\to\alpha)]가 강한 단조증가함수[3]라고 하자. 이때 합성함수 [math(a\circ k:\beta\to S)]를 [math(a)]의 부분열이라 한다. 부분열이 나오는 유명한 정리로는 '어떤 무한수열의 임의의 무한 부분수열이 [math(L)]로 수렴하면, 그 수열은 [math(L)]로 수렴한다'라는 기초 해석학의 정리가 있다.[4]


2.2. 수열의 귀납적 정의[편집]


수열의 귀납적 정의 문서 참고.


2.3. 생성함수[편집]


수열 [math(\{a_n\})]에 대해 생각하는 형식적인 멱급수
[math( \displaystyle A(x) = \sum_{i=0}^{\infty} a_i x^i )]
로 정의된다. 자세한 것은 문서를 참고.


2.4. 수열의 합[편집]


[math( \displaystyle \sum_{k=1}^{n} a_k =a_1+a_2+a_3+...+a_n)]

수학에서의 수열 [math( a_1, a_2, a_3, ... , a_n)]이 주어졌을 때 이들의 합을 시그마 기호로 나타낼 수 있다. 시그마를 쓰는 이유는 합을 뜻하는 라틴어 단어 summa의 앞글자를 땄기 때문이다. 그리스 문자 Σ는 로마자의 S에 대응되기 때문. 때문에 영어권에서는 [math(\Sigma)]라고 쓰고 sum이라고 읽는 경우가 거의 대부분이다. 비슷한 것으로 [math(\Pi)](파이)가 있는데, 이것은 곱하기 버전 (곱하기의 영문 표현인 product의 p에 대응).

  • 시그마 밑에는 각 항수를 대입할 문자를 지정하고, 더하기를 시작할 첫 항을 지정한다. [math(k)]에 대한 일반항을 제1항부터 더할 것이라면, [math(k=1)]이라고 쓰면 된다. 만약 일반항에 여기서 지정한 문자가 아닌 다른 문자가 들어간다면 그 문자는 상수로 취급한다.(문자를 [math(k)]로 지정했는데 일반항에 [math(m)]이 튀어나온다거나)
  • 시그마 위에는 마지막 항을 지정한다. 제[math(n)]항까지 더할 것이라면, [math(n)]이라고 쓰면 된다.
  • 시그마 오른쪽에는 일반항을 써준다. 항수가 들어갈 문자는 앞에서 지정한 문자와 같아야 한다. 예를 들어 [math(n)]에 대한 수열에서 일반항이 [math(3n-2)]이고 [math(n)]에 들어가는 수가 항수라면, [math(n)] 대신에 앞에서 지정한 문자 (본 예시에서는 [math(k)])로 바꿔 써야 한다.

시그마의 일반적인 성질은 다음과 같다.

1. [math( \displaystyle \sum_{k=1}^{n}\left(a_k \pm b_k\right) = \sum_{k=1}^{n}a_k \pm \sum_{k=1}^{n}b_k)] (복호동순)

1. [math( \displaystyle \sum_{k=1}^{n}ca_k = c\sum_{k=1}^{n}a_k)] ([math(c)]는 상수)

1. [math( \displaystyle \sum_{k=1}^{n}c = cn)]


어린 시절 산수를 배울 때 [math(1)]에서 [math(10)]까지 다 더하면 [math(1+2+3+4+5+6+7+8+9+10=55)]가 된다는 사실을 발견한 적 있을 것이다. 이것이 바로 일종의 유한급수이다. 이를 급수식으로 바꿔 보면

[math( \displaystyle \sum_{k=1}^{10}k)]

이렇게 된다.

위의 공식을
[math( \displaystyle \sum^{n}_{k=1}k = \frac{n(n+1)}{2} )]
와 같은 일반적인 식으로 나타낼 수도 있으며 [math(\displaystyle \frac{10\times (10+1)}{2}=55)]가 나오는 것을 확인할 수 있다. 참고로 이걸 그대로 제곱하면 3차항의 합이 된다.

[math( \displaystyle k^2)]의 경우는 아래와 같다.
[math( \displaystyle \sum^{n}_{k=1}k^2 = \frac{n(n+1)(2n+1)}{6} )]
이를 [math( \displaystyle k^c)]일 경우로 일반화한 식이 바로 파울하버의 공식이다. 자세한 것은 문서 참조.

2015 개정 교육과정에서 수열의 합은 수학1 과목에서 다룬다. 한편 [math(n)]항까지 더하는 것이 아니라 무한 개의 항을 모두 합하는 경우도 생각할 수 있는데, 이는 2015 개정 교육과정의 미적분 과목에서 다루며, 자세한 설명은 무한급수 문서를 참고할 것.

수열의 합을 적분을 이용해 나타낼 수도 있다.

생성함수 [math(A(k))]에 대해서

[math(\displaystyle \sum_{k=1}^{n} A(k) = \int_{1}^{n} A(k) \ \mathrm{d}\lfloor k \rfloor)] ([math(\lfloor k \rfloor)]는 최대 정수 함수)

증명은 급수를 각 항의 합으로 나타낸 뒤 정리해주면 된다. 4번의 경우는 너비가 1이고 높이가 [math(A(k))]인 직사각형을 모아서 그 넓이를 합하는 것을 떠올리면 쉽다.[5]
자세한 설명을 담은 영상


파일:CC-white.svg 이 문단의 내용 중 전체 또는 일부는
문서의 r131 판{{{#!wiki style="display: inline; display: 2;"
, 2번 문단}}}에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문단의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r131 판{{{#!wiki style="display: inline; display: 2;"
, 2번 문단}}} (이전 역사)
문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)





2.4.1. 여러 수열의 합[편집]


다음은 고등학교 과정에서 흔히 나오는 수열의 합의 계산이다.

* [math(\displaystyle\sum_{k=1}^n\left(\dfrac{1}{k}-\dfrac{1}{k+1}\right)=\left(\dfrac11-\cancel{\dfrac12}\right)+\left(\cancel{\dfrac12}-\cancel{\dfrac13}\right)+\cdots+\left(\cancel\dfrac1{n-1}-\cancel{\dfrac1n}\right)+\left(\cancel{\dfrac1n}-\dfrac1{n+1}\right)=1-\dfrac{1}{n+1}=\dfrac{n}{n+1})]

* [math(\begin{aligned}\displaystyle\sum_{k=1}^n\left(\dfrac{1}{k}-\dfrac{1}{k+2}\right)&=\left(\dfrac11-\cancel{\dfrac13}\right)+\left(\dfrac12-\cancel{\dfrac14}\right)+\left(\cancel{\dfrac13}-\cancel{\dfrac15}\right)+\cdots+\left(\cancel{\dfrac1{n-2}}-\cancel{\dfrac1n}\right)+\left(\cancel{\dfrac1{n-1}}-\dfrac1{n+1}\right)+\left(\cancel{\dfrac1{n}}-\dfrac1{n+2}\right)\\&=\dfrac11+\dfrac12-\dfrac{1}{n+1}-\dfrac{1}{n+2}\;(n\geq 2)\end{aligned})]

* [math(\displaystyle\sum_{k=1}^n (\sqrt{k+1}-\sqrt k)=(\cancel{\sqrt 2}-\sqrt 1)+(\cancel{\sqrt 3}-\cancel{\sqrt 2})+\cdots+(\cancel{\sqrt n}+\cancel{\sqrt {n-1}})+(\sqrt{n+1}-\cancel{\sqrt n})=\sqrt{n+1}-1)]

* [math(\begin{aligned}\displaystyle\sum_{k=1}^n (\sqrt{k+2}-\sqrt k)&=(\cancel{\sqrt 3}-\sqrt 1)+(\cancel{\sqrt 4}-\sqrt 2)+(\cancel{\sqrt 5}-\cancel{\sqrt 3})+\cdots+(\cancel{\sqrt n}-\cancel{\sqrt {n-2}})+(\sqrt {n+1}-\cancel{\sqrt {n-1}})+(\sqrt {n+2}-\cancel{\sqrt n})\\&=\sqrt{n+1}+\sqrt{n+2}-\sqrt 1-\sqrt 2\;(n\geq 2)\end{aligned})]

위 식들을 일반화하면 다음과 같으나 각각 [math(m=1)], [math(m=2)]인 경우에 해당하는 위 식들 말고는 계산이 지나치게 복잡하다고 하여 거의 나오지 않는다.
* [math(\begin{aligned}\displaystyle\sum_{k=1}^n\left(\dfrac{1}{k}-\dfrac{1}{k+m}\right)&=\left(\dfrac11+\dfrac12+\cdots+\dfrac1m\right)-\left(\dfrac{1}{n+1}+\cdots+\dfrac1{n+m}\right)\\&=\displaystyle\sum_{k=1}^m\left(\dfrac1k-\dfrac1{n+k}\right)\;(n\geq m)\end{aligned})]

* [math(\begin{aligned}\displaystyle\sum_{k=1}^n(\sqrt {k+m}-\sqrt k)&=\sqrt{n+1}+\cdots+\sqrt {n+m})-(\sqrt 1+\sqrt 2+\cdots+\sqrt m)\\&=\displaystyle\sum_{k=1}^m(\sqrt {n+k}-\sqrt k)\;(n\geq m)\end{aligned})]

나아가, [math(\displaystyle\sum_{k=1}^n (\sqrt{k+1}-\sqrt k))]의 경우 다음과 같이 변형된 꼴로도 종종 나온다.

* [math(\begin{aligned}\displaystyle\sum_{k=1}^n \dfrac1{\sqrt{k+1}+\sqrt k}&=\displaystyle\sum_{k=1}^n \dfrac{\sqrt{k+1}-\sqrt k}{(\sqrt{k+1}+\sqrt k)(\sqrt{k+1}-\sqrt k)}\\&=\displaystyle\sum_{k=1}^n (\sqrt{k+1}-\sqrt k)\end{aligned})]

또한 다음과 같은 값들은 별도로 암기하는 편이 유용하다.

  • [math(\displaystyle\sum_{k=1}^{10}k=55)]
  • [math(\displaystyle\sum_{k=1}^{10}k^2=385)]


2.4.1.1. 부분분수분해[편집]

* [math(\dfrac1{AB}=\dfrac1{B-A}\left(\dfrac1A-\dfrac1B\right)\quad(\textsf{단,}\;A\neq B,\;A\neq 0,\;B\neq 0))]

위 공식을 이용하여, 변형된 수열의 합을 구하는 문제도 나온다. 다음과 같이 부분분수분해를 이용하여 식을 변형한 뒤 위의 방법대로 수열의 합을 구하면 된다.

  • [math(\displaystyle\sum_{k=1}^n \dfrac{3}{k(k+2)}=\displaystyle\sum_{k=1}^n \dfrac32\left(\dfrac1k-\dfrac1{k+2}\right))]


2.5. 수열의 극한[편집]


파일:나무위키상세내용.png   자세한 내용은 수열의 극한 문서를 참고하십시오.



3. 주요한 수열들[편집]


  • 등차수열: 항의 값이 일차함수와 같이 선형적인 수열
  • 등비수열: 항의 값이 지수함수와 같이 지수적인 수열
  • 조화수열: 각 항의 역수가 등차수열인 수열
  • 계차수열: 어떤 수열의 이웃한 항 사이의 차로 구성된 수열
  • 특정 함수로 정의되는 수열
    • 다항수열: 다항함수로 정의되는 수열. 수열의 합은 각각의 항에 거듭제곱의 합 공식을 따로따로 적용하여 각 항의 계수를 곱해준다. 정적분과 원리가 다소 비슷하다.
    • 삼각수열: 삼각함수로 정의되는 수열. 수열의 합을 구할 때 항을 몇천 개나 합해야 하는 문제가 나오지만 그건 장식이고 주기가 [math(2{\pi})]임을 이용해서 주기만큼 나눈 나머지에 해당하는 항을 더하면 된다.
  • 부분군열
  • 피보나치 수열: 가장 단순한 이계 동차 선형점화식을 따르는 수열로, 일반항에 황금비가 등장한다.
  • 콜라츠 수열: 유명한 3n+1의 문제. 1937년에 나온 수열인데 2023년 기준으로 아직도 수렴하는지 알려지지 않은 난제 중 하나이다.


4. 기타[편집]


OEIS라는 온라인 사전 사이트가 있는데, 수학/물리학에서 다루는 여러 수열에 대해서 볼 수 있는 사이트이다.


5. 관련 문서[편집]



파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-04 10:33:02에 나무위키 수열 문서에서 가져왔습니다.

[1] 규칙 없이 무한히 반복될 경우 해당 수열은 난수열(, random sequence)이라고 한다. 초월수의 숫자 배열이 대표적이다.[2] 선택공리를 받아들이면 이론상으로는 모든 집합을 정렬할 수 있으므로 함수와 수열은 사실상 같은 것이 된다. 하지만 해석학에서 하는 수열은 대다수가 정의역이 가산이고, 이산 위상이 주어질 때만 다룬다.[3] 강한 단조 함수란 함수의 정의역의 대소가 그대로 함수값의 대소로 이어지는 함수를 말한다. 즉, 강한 단조증가 함수라면 [math(x<y)]이면 [math(f(x)<f(y))]가 되며, 강한 단조감소 함수라면 [math(x<y)]이면 [math(f(x)>f(y))]가 된다.[4] 하나만 수렴하면 안 되며, 말 그대로 임의의 무한 부분수열이 전부 같은 값으로 수렴해야 한다. 예시로 '유계인 무한 수열에는 반드시 유계인 부분수열이 존재한다'라는 정리도 있는데, 이 정리에서 말하는 원래의 무한 수열이 수렴하지 않고 진동(발산)하는 경우도 있다. 예를 들어서 [math(a_n=\sin(n))]라고 하면 이 수열은 [math(\forall n \in \mathbb{N})]에 대해서 [math(-1<a_n<1)]로 유계인데, 이 수열에서는 -1이나 0, 1로 수렴하는 부분수열을 잡을 수 있기 때문.[5] 물론 쉽게 표현하자면 이렇다. 엄밀한 정의는 스틸체스 적분 문서 참조.