순서 관계

덤프버전 :

수학기초론
Foundations of Mathematics


[ 펼치기 · 접기 ]
다루는 대상과 주요 토픽
수리논리학
논리 · 논증{귀납논증 · 연역논증 · 귀추 · 유추} · 공리 및 공준 · 증명{자동정리증명 · 귀류법 · 수학적 귀납법 · 반증 · 더블 카운팅 · PWW} · 논리함수 · 논리 연산 · 잘 정의됨 · 조건문(조각적 정의) · 명제 논리(명제 · 아이버슨 괄호 · · · 대우) · 양상논리 · 술어 논리(존재성과 유일성) · 형식문법 · 유형 이론 · 모형 이론
집합론
집합(원소 · 공집합 · 집합족 · 곱집합 · 멱집합) · 관계(동치관계 · 순서 관계) · 순서쌍(튜플) · 서수(하세 다이어그램 · 큰 가산서수) · 수 체계 · ZFC(선택공리) · 기수(초한기수) · 절대적 무한
범주론
함자 · 수반 · 자연 변환 · 모나드 · 쌍대성
계산가능성 이론
계산 · 오토마타 · 튜링 기계 · 바쁜 비버 · 정지 문제 · 재귀함수
정리
드모르간 법칙 · 대각선 논법 · 러셀의 역설 · 거짓말쟁이의 역설 · 뢰벤하임-스콜렘 정리 · 슈뢰더-베른슈타인 정리 · 집합-부분합 정리 · 퍼스의 항진명제 · 굿스타인 정리 · 완전성 정리 · 불완전성 정리(괴델 부호화) · 힐베르트의 호텔 · 연속체 가설 · 퍼지 논리
기타
예비사항(약어 및 기호) · 추상화 · 벤 다이어그램 · 수학철학
틀:논리학 · 틀:이산수학 · 틀:이론 컴퓨터 과학 · 철학 관련 정보 · 논리학 관련 정보 · 수학 관련 정보





1. 준순서
2. 부분순서
3. 순부분순서
4. 전순서
5. 정렬 순서
6. 용어
7. 예시
8. 순서동형
8.1. 재미있는 결과



1. 준순서[편집]


집합 [math(A)]에서 다음 두 조건을 만족하는 이항 관계 [math(\leq)][1]를 준순서 혹은 원순서(quasi-order, preorder)라 한다.
  1. [math(\forall x \in A \left(x\leq x \right))] (반사관계)
  2. [math(\forall x, y, z \in A ((x\leq y \wedge y\leq z) \to x\leq z))] (추이관계)

일반적으로 순서관계라고 하면 준순서가 아닌, 아래의 부분순서 관계를 뜻한다.

2. 부분순서[편집]


집합 [math(A)]에서 다음 세 조건을 만족하는 이항 관계 [math(\leq)]를 부분 순서(partial order)라고 하고 [math(\left(A, \leq \right))]를 부분 순서 집합(partially ordered set, poset)이라고 한다:
  1. [math(\forall x \in A \left(x\leq x \right))] (반사관계)
  2. [math(\forall x, y \in A \left(\left(x\leq y \wedge y\leq x \right) \to x = y \right))] (반대칭관계)
  3. [math(\forall x, y, z \in A ((x\leq y \wedge y\leq z) \to x\leq z))] (추이관계)

부분순서가 주어진 유한 집합에 대해 하세 다이어그램이라는 그래프로 나타내는 방법이 있다.

3. 순부분순서[편집]


집합 [math(A)]에서 정의된 이항 관계 [math(<)]가 다음을 만족할 때, 이를 A의 순부분순서(strict partial order)라고 한다:
  1. [math(\forall x \in A \left(\neg(x
  2. [math(\forall x, y, z \in A ((x

사실상 순부분순서와 부분순서는 거의 같은 것이다. 즉, <를 정의하면 [math(\le)]를 자연스럽게 정의할 수 있고, 반대도 마찬가지다.
[math( \left(x


4. 전순서[편집]


집합 [math(A)]에서의 이항 관계 [math(\leq)]가 다음을 만족하면, 이를 전순서(total order) 또는 선형순서(linear order)라 하고, [math(\left(A, \leq \right))]를 전순서 집합(totally ordered set, toset) 또는 선형 순서 집합(linearly ordered set)이라 한다:
  1. [math(\forall x, y \in A \left(x\leq y \lor y \leq x \right))] (항상 비교 가능)
  2. [math(\forall x, y \in A \left(\left(x\leq y \wedge y\leq x \right) \to x = y \right))] (반대칭관계)
  3. [math(\forall x, y, z \in A ((x\leq y \wedge y\leq z) \to x\leq z))] (추이관계)

부분순서 집합과의 차이점은 1번 조건에 따라 모든 원소들이 서로 비교가능하다는 것이다. 따라서 원소들을 일렬로 배치하는 모형을 생각할 수 있고, 이런 점에서 부분순서 집합의 부분집합인 전순서 집합을 사슬(chain)이라고 부르기도 한다. 이와 비슷하게 부분순서 집합을 그물이라 부르는 경우도 있다.

흔히 교재에 따라 부분 순서 관계와의 연관성을 강조하기 위해 반사성 조건을 집어넣는 경우가 있는데, 사실 이는 1번 조건으로부터 연역 가능하다.

[math(\begin{aligned}
\forall x&\in A(x \leq x \lor x \leq x) \\
\therefore\forall x&\in A(x \leq x) \\
\end{aligned})]

따라서 1번 조건을 만족시킨다면 자연스럽게 반사성도 만족하기 때문에 정의에 포함하지 않아도 상관이 없다.

5. 정렬 순서[편집]


전순서 집합 [math(A)]가 임의의 부분집합이 극소원소를 가지면, [math(A)]를 정렬집합(well-ordered set)이라 하고, 그 전순서를 정렬 순서(well-ordering)이라 한다.

정렬 집합은 어떤 서수(ordinal)에 대해 순서 동형이다. 즉, [math(ON)]을 서수의 고유 모임이라고 하면, 임의의 정렬 집합 [math(A)]에 대하여 [math(x,\:y\in A,\:\:x<y\iff f(x)<f(y))]인 전단사함수 [math(f:A\to\alpha)]가 존재하는 서수 [math(\alpha\in ON)]가 존재한다.

선택공리를 가정하면, 임의의 집합에 정렬순서를 줄 수 있는게 보장 된다. 이를 정렬 정리(well-ordering theorem)라고 하는데, ZF하에서 선택공리와 동치인 대표적인 명제이다.


6. 용어[편집]


  • 비교 가능성(comparability)
부분순서집합 [math(\left(A, \leq \right))]가 주어졌을 때, 집합 [math(A)]의 두 원소 [math(a, b)]가 [math(a \leq b)]이거나 [math(b \leq a)]이면 a와 b는 비교 가능하다(comparable)고 하며, 그렇지 않으면 a와 b는 비교 불가능하다(incomparable)고 한다.

  • 극대 원소, 극소 원소
부분순서집합 [math(\left(A, \leq \right))]가 주어졌을 때, 집합 [math(A)]의 모든 원소 [math(x)]에 대하여 [math(M \leq x \implies x=M)]을 만족시키는 집합 [math(A)]의 원소 [math(M)]을 집합 [math(A)]의 극대 원소(Maximal element)라고 하며, 반대로 집합 [math(A)]의 모든 원소 [math(x)]에 대하여 [math(x \leq m \implies x=m)]을 만족시키는 집합 [math(A)]의 원소 [math(m)]을 집합 [math(A)]의 극소 원소(Minimal element)라고 한다.
극대, 극소 원소는 한 부분순서집합 내에서 여러 개가 존재할 수도 있고, 아예 존재하지 않을 수도 있다.

  • 최대 원소, 최소 원소
부분순서집합 [math(\left(A, \leq \right))]가 주어졌을 때, 집합 [math(A)]의 모든 원소 [math(x)]에 대하여 [math(x \leq M)]을 만족시키는 집합 [math(A)]의 원소 [math(M)]을 집합 [math(A)]의 최대 원소(Greatest element)라고 하며, 반대로 집합 [math(A)]의 모든 원소 [math(x)]에 대하여 [math(m \leq x)]를 만족시키는 집합 [math(A)]의 원소 [math(m)]을 집합 [math(A)]의 최소 원소(Least element)라고 한다.
최대, 최소 원소의 개념의 핵심은 부분순서집합의 모든 원소가 그 원소에 대하여 비교 가능해야 한다는 것이다. 만약 비교 가능하지 않은 원소가 하나라도 존재한다면 최대, 최소 원소가 될 수 없다. 최대, 최소 원소는 아예 존재하지 않을 수도 있지만, 한 부분순서집합 내에서 둘 이상 존재할 수 없다. 또한 모든 최대, 최소 원소는 각각 극대, 극소 원소가 된다.
한편 모든 유한한 전순서관계는 최대 원소와 최소 원소를 갖지만 어떤 부분순서집합이 최대, 최소 원소를 갖는다고 해서 반드시 전순서집합이 되는 것은 아니다. 왜냐하면 최대, 최소 원소를 제외한 다른 원소들 사이에 비교 가능하지 않은 원소의 쌍이 존재할 수 있기 때문이다.

  • 상계, 하계, 상한, 하한
실수 체계에서의 정의와 유사하다. 부분순서집합 [math(\left(A, \leq \right))]와 집합 [math(A)]의 부분집합 [math(E)]가 주어졌을 때, 집합 [math(E)]의 모든 원소 [math(x)]에 대하여 [math(x \leq M)]을 만족시키는 집합 [math(A)]의 원소 [math(M)]을 집합 [math(E)]의 상계(Upper Bound)라고 하며, 반대로 집합 [math(E)]의 모든 원소 [math(x)]에 대하여 [math(m \leq x)]를 만족시키는 집합 [math(A)]의 원소 [math(m)]을 집합 [math(A)]의 하계(Lower Bound)라고 한다. 집합 [math(E)]의 상계 집합의 최소 원소를 집합 [math(E)]의 상한(Supremum) 또는 최소 상계(Least Upper Bound)라 하고, 하계 집합의 최대 원소를 하한(Infimum) 또는 최대 하계(Greatest Lower Bound)라 한다.
실수 집합의 경우 완비성 공리(Completeness Axiom)에 의해서 상계(하계)를 가지면 상한(하한)을 반드시 가졌다. 하지만 일반적으로는 상계와 하계를 갖는다고 해서 상한과 하한이 반드시 존재하는 것은 아니다. 유리수 집합의 부분집합으로 '제곱이 2보다 작은 수의 집합'을 생각해 보자. 이 집합의 상계는 1.5, 2, 3, 100 등 수도 없이 많이 존재하지만, 상한은 없다.

7. 예시[편집]


순서 관계 중에서도 전순서에 해당한다. 어찌 보면 순서 관계라는 개념 자체가 수 체계에서만 사용하던 원소들 간의 대소 비교를 모든 종류의 원소로 확장시킨 개념이라 말할 수 있다. a가 b보다 작다는 것을 a가 b에 대하여 순서상 앞에 위치한다(precede)고 해석할 수 있기 때문이다.

  • 집합 사이의 포함 관계
반사성과 추이성을 만족하고, 반대칭성은 아예 집합의 상등의 정의와 동일하므로 부분순서관계에 해당한다. 하지만 완전한 포함 관계에 있지 않은 집합의 쌍이 존재하므로 전순서관계는 아니다. 최소 원소는 공집합([math(\emptyset)])이며, 최대 원소는 존재하지 않는다.

  • 자연수의 나누어떨어짐 관계([math(|)])
나누어떨어짐 관계 역시 반사성, 반대칭성, 추이성을 모두 만족시키므로 부분순서관계에 해당한다. 최소 원소는 1이며, 최대 원소는 존재하지 않는다.
  • 모든 자연수는 자기 자신을 나누어떨어뜨릴 수 있으므로 반사성을 만족한다.
  • 어떤 두 자연수 [math(a, b)]에 대하여 [math(a|b)]이고 [math(b|a)]라 가정하자. 그러면 [math(b=am)], [math(a=bn)]을 만족시키는 두 정수 [math(m, n)]이 존재하며, [math(a, b)]가 자연수이므로 [math(m, n)] 역시 자연수이다. [math(a=bn=\left(am\right)n=a\left(mn\right))]이므로 [math(m=n=1)]이고, 결과적으로 [math(a=b)]라는 결론을 얻는다. 따라서 반대칭성도 만족한다.
  • 어떤 세 자연수 [math(a, b, c)]에 대하여 [math(a|b)]이고 [math(b|c)]라 가정하자. 그러면 [math(b=am)], [math(c=bn)]을 만족시키는 두 정수 [math(m, n)]이 존재한다. 그러면 [math(c=a\left(mn\right))]이므로 [math(a|c)]이다. 따라서 추이성도 만족한다.
다만 이 관계 역시 8, 12처럼 서로 나누어떨어지지 않는 관계에 있는 자연수의 쌍이 존재하기 때문에 전순서관계가 아니다.
만약에 수의 범위를 정수로 확장할 경우 반대칭성을 만족하지 못해 부분순서관계가 되지 못한다. 반대칭성을 만족하지 못하는 반례로 2와 -2를 들 수 있다. 둘은 서로를 나누어떨어뜨리지만 [math(2 \neq -2)]이다.

취소선을 쳤지만, 순서관계가 성립되지 않을 경우 수학적으로 참이다.

  • 족보개족보가 아니라면 부자 관계로 순서관계를 줄수 있다.


8. 순서동형[편집]


[math(\forall x, y \in A (x <_1 y \leftrightarrow f(x) <_2 f(y)))]를 만족하는 일대일대응 [math(f:A \to B)]가 존재할 때 [math(f)]를 순서동형사상이라 하고, 두 순서집합 [math((A, <_1))]과 [math((B, <_2))]는 순서동형이라고 한다.


8.1. 재미있는 결과[편집]


  • 끝점이 없고 가산이며 조밀한 모든 전순서집합은 서로 순서동형이다. (따라서 유리수만 보면 된다.)
  • 모든 가산인 전순서집합은 유리수의 부분집합과 순서동형이다.


파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-04 12:07:28에 나무위키 순서 관계 문서에서 가져왔습니다.

[1] 본 문서에서는 초등학교 때부터 가르치는 평범한 부등호를 사용하였으나, 순서관계를 다루는 집합론, 해석학, 위상수학 등의 수학기초론 교과서에서는 흔히 쓰이는 부등호 대신 [math(\prec)], [math(\preceq)], [math(\succ)], [math(\succeq)]라는 살짝 휘어진 기호를 쓰기도 한다.