천구 좌표계
덤프버전 : r20230302

1. 개요[편집]
天球座標系 / Celestial Coordinate System
천체 관측에서 천체의 위치를 나타내기 위해 지구를 중심으로 나타낸 좌표계이다. 기본적으로 구면좌표계를 사용하며, 천구상의 위치만 필요하기에 거리는 표기하지 않는다. 따라서 두 각도 성분을 통해 천체의 위치를 표시하게 된다.
천구 좌표계의 개념을 이해하기 위해 먼저 천구의 개념을 이해할 필요가 있는데, 천구는 실제로 존재하지 않는 가상의 구(球)로써 과거의 천문학에서 쓰였던 것을 현재까지 쓰고 있다. 관측자를 중심으로 거대한 반지름을 갖는 구를 설정하고, 모든 천체가 구의 표면에서 움직인다는 것을 전제로 하는 개념이다. 즉 천동설을 기반으로 나온 개념이다. 따라서 관측의 편리함 때문에 계속 사용하고 있을 뿐 과학적으로 큰 의미가 있는 것은 아니며, 우주에 대한 이해가 깊어진 현대 천문학에서는 천체 관측 이외에는 천구를 사용하지 않는다.
2. 고전적 정의[편집]
이체 문제의 해법은 이차 곡선이다. 관측 방향이 주어질 때, 궤도 요소는 다음과 같다:
지구를 관측자로 두고, 다음을 참고하여라:
2.1. 교육과정 일람[편집]
2007 개정 교육과정: 지평좌표계, 적도좌표계를 지구과학Ⅱ에서 다룬다.
2009 개정 교육과정: 해당 내용들이 지구과학Ⅰ로 격하되었다.
2015 개정 교육과정: 해당 내용들이 다시 지구과학Ⅱ로 격상되었다.
별도로 고급 지구과학 교과에서는 황도 좌표계와 은하 좌표계도 다룬다. 지구과학Ⅱ에서는 7단원 후반부에 은하좌표계가 맛보기 수준으로 나오긴 하지만 아직까지 출제된 적은 없다.
2.2. 적도 좌표계[편집]

赤道座標系 / Equator Coordinates System
적도 좌표계는 지구를 중심으로 한 가장 기본적인 좌표계로, 대부분의 천체는 이 적도 좌표계를 이용해 위치를 표시하고 관측을 하게 된다. 먼저 지구의 적도를 연장시킨 가상의 대원을 천구에 그린다. 이것을 천구의 적도라 부른다. 그리고 지구의 북극을 연장시켜 천구에 표시하고 이 점을 천구의 북극이라 부르고, 지구의 남극을 연장시켜 천구에 표시한 점을 천구의 남극이라 부른다. 그 다음으로 황도(黃道)[2] 와 천구의 적도가 만나는 두 점을 표시하고, 이 중 태양이 남반구에서 북반구로 이동할 때의 점을 춘분점, 다른 한 점을 추분점 이라고 한다.

천구의 북극과 천구의 남극을 지나는 대원을 시간권(또는 시권, hour circle)이라고 부른다. 따라서 천구의 적도와 시간권은 수직이다.
춘분점을 지나는 시간권을 기준으로 관측하고자 하는 천체의 시간권까지의 각도를 반시계 방향으로 잰 각도를 적경(right ascension)이라고 하며 (그림상에서 α에 해당하는 각도), 0º~360º 또는 0시~24시로 표현한다.[3] 즉, 춘분점이 기준이므로 춘분점에서의 시각이 0이며 반시계 방향으로 적경이 증가한다. 다음으로 관측하고자 하는 천체의 시간권을 따라 천구의 적도를 기준으로 잰 각도를 적위(declination)라 하며 (그림상에서 δ에 해당하는 각도) -90º~90º 의 값을 갖는다. 천구의 적도가 기준이므로 천구의 적도의 적위가 0º, 천구의 북극의 적위가 90º, 천구의 남극의 적위가 -90º 이다.
연주시차와 별의 고유 운동을 생각하지 않는다면, 태양계 천체 이외의 모든 별들은 천구상에서 운동하지 않는다. 즉 고유한 적경과 적위값을 가지므로, 찾고자 하는 천체의 적경과 적위값만 안다면 손쉽게 별들의 위치를 찾을 수 있다.[4] 또 과거에 행성이 중요했던 이유는 이들이 다른 별들과 달리 움직였기 때문이다.[5]
2.3. 지평 좌표계[편집]

地平座標系 / Horizontal Coordinate System
지평 좌표계는 지구의 관측자를 중심으로 한 좌표계로, 일단 그냥 알기 쉬운 장점이 있다. 자신이 있는 점을 기준으로 다 해결하면 된다.
관측자를 중심으로 천구를 향해 선을 그어 만나는 점을 천정, 아래쪽으로 만나는 점을 천저, 그리고 관측자가 서있는 면을 확장시켜 천구와 만나게 되는 대원을 지평선이라 한다. 방위를 기준으로 지평선과 북쪽이 만나는 점을 북점, 남쪽과 만나는 점을 남점이라 한다. 주로 북점을 기준으로 하는 별까지의 각도를 방위각 (0º~360º), 지평선을 기준으로 하는 별까지의 높이 각도를 고도(0º~90º)라고 한다. 따라서 북점의 방위각은 0º, 남점은 180º 이고 천정의 고도는 90º 이다. 또한 관측자를 기준으로 하므로 지평면 아래의 보이지 않는 별들은 보통 신경쓰지 않는다.
3. 정의[편집]
역기점 J2000.0에서 다음에 근사하여 정의한다:
3.1. 적도좌표[편집]
ICRS에서 좌표계가 만족해야 할 조건을 요구하며, ICRF에서 퀘이사 등 외은하 천체의 좌표를 열거하여 그것을 실현한다. 적도 좌표의 고전적 모델이 천체 관측에서 가장 많이 쓰였기 때문에 이를 본땄으며, 이를 J2000.0에서의 적도 좌표계로 정의한다. 고전적인 정의와 호환되기 쉽도록 정의된 것이지, 실제 지구와 태양의 움직임에 연동하지 아니하며 정확도를 위해서는 그렇게 정의해서도 안 된다.
3.2. 지평좌표[편집]
쓰려면 쓸 수는 있다(...) 그러나 천정과 북점의 정의부터 문제가 된다.
* 천정: 중력장의 반대 기준으로 천정을 정한다면 지오이드의 법선 방향이고 지오이드는 구도 지구타원면도 아니며, 가장 최근의 구현인 EGM2020의 경우 2160차에 걸쳐 다중극 전개를 한 것이다! 물론 사용에는 문제가 없지만, 변환이 극히 불편해진다.
* 북점: 인공위성을 발사해 확인하는 방법, 지자기를 측정하고 천문대[6] 에서 관측 자료의 테이블을 다운로드 받아 대조하는 방법 등이 있으며, 당연히 극단적인 노력이 필요하거나, 부정확하고 불편하기 짝이 없다. 북점이 어디인지도 알 수가 없는 것이다.
따라서 지구 저궤도에 널린 GNSS로 직접 적도좌표를 잡는 게 낫지, 현대에 와서는 전혀 쓸 이유가 없는 잉여로운 좌표계이므로 천문학은 물론 측지학에서도 버림받는다.
3.3. 황도좌표[편집]
적도좌표에서 각도에 적절한 offset을 가하여 얻으며, 고전적인 정의와 호환된다.
3.4. 은하좌표[편집]
천구상의 은경과 은위를 기준으로 한 좌표계이며, 주로 외은하 천체 혹은 우주적 거리의 신호의 위치를 기술할 때에 쓰인다. 마찬가지로, 관측을 통해 offset이 수학적으로 정의된다. 우주배경복사, 은하의 분포 등을 시각화할 때 유용하다.

[1] 천체가 관측자로부터 가장 가까운 위치[2] 천구 상에서 태양이 1년 동안 이동하는 길.[3] '시'는 일상생활에서의 '시간'을 의미하는 게 아니라 각도의 단위이며 1시각 = 15º 이다.[4] 북극성을 통해 천구의 북극을 찾고 다른 별을 찾으면 된다.[5] 천체 관측 기술이 발달하기 이전에는 연주시차와 고유 운동을 찾아낼 수 없었고, 행성과 항성의 구분 없이 밤하늘에 반짝이는 모든 것들이 같은 별이었으므로, 움직이는 천체인 태양계 행성에 대해 많은 관심을 가질 수 밖에 없었다.[6] 주로 미 정부