태양
최근 편집일시 : (♥ 4)
대한민국의 가수에 대한 내용은 태양(BIGBANG) 문서
, 다른 뜻에 대한 내용은 태양(동음이의어) 문서
참고하십시오.1. 개요[편집]
태양(太陽, Sun)은 태양계의 중심에 존재하는 항성(별)으로, 태양계의 유일한 항성이자 에너지의 근원이다. 태양이 있기에 지구에 낮과 밤의 구분, 사계절과 기후 더 나아가 생명이 존재할 수 있다. 태양은 우리 은하 내에서도 드물게 존재하는 G형 주계열성으로, 덕분에 4광년 떨어진 센타우루스자리 알파에서도 태양은 맨눈으로 잘 보일 정도로 밝은 별이다.[6]
2. 기원[편집]
자세한 내용은 태양계 기원설 문서를 참고하십시오.
3. 특징[편집]
태양의 핵에서 생성되는 에너지의 양은 1세제곱미터당 약 276.5와트로 이것은 고작 도마뱀의 대사량 정도밖에 안 되는 일률이다. 즉 부피 당으로는 인간이 체온으로 내는 열이 더 많다. 태양이 많은 에너지를 내는 것은 부피당 일률이 높기 때문이 아니라 핵 자체의 부피가 어마어마하게 크기 때문이다.
태양이 1초에 만들어 내는 에너지는 3.9 x 1026J[8] 이며 E=mc2의 공식에 의해 1초 동안에 657,000,000t의 수소가 합쳐져서 6.53억 톤의 헬륨이 생성되어 줄어든 질량만큼 에너지로 전환된다. 하지만 태양이 평생 에너지로 전환되어 소모하는 질량은 0.1%도 되지 않으며 이는 블랙홀 충돌[9] 이나, 초신성 폭발, 블랙홀에 빨려들어가는 가스가 강착원반의 형태가 되어 방출하는 에너지 효율[10] 에 비하면 턱없이 적은 비율이다.
지구에 도달하는 열은 태양이 내는 열의 1/2,200,000,000 정도다.
태양의 핵에서 핵융합을 통해 발생한 광자가 태양 표면까지 도달하는 데는 약 100,000년이 걸린다. 단순히 빛의 속도로 태양의 반경을 지나치는 데에는 2초면 충분하지만 태양 내부는 매우 불투명하기 때문에 흡수-재방출을 거쳐 탈출하는 데 걸리는 시간이 매우 길다. 반면 똑같이 핵융합의 부산물인 중성미자의 경우 물질의 간섭을 거의 받지 않기 때문에 빛의 속도로 태양을 탈출한다. 따라서 태양 중성미자를 검출함으로써 태양 중심부에서는 아직도 핵융합이 활발하게 이루어지고 있음을 확인 가능하다. 한편 태양으로부터 오는 중성미자의 검출량이 예측값의 1/3에 불과해 한동안 수수께끼로 남아 있었지만 중성미자 진동이 발견됨으로써 해결되었다.
안드로메다 은하와 우리 은하가 합쳐질 때 같이 휘말릴 것이라는 얘기도 있지만, 이는 항성 간 거리와 상호 중력 관계를 감안했을 때, 거의 무시해도 좋을 만큼 낮은 확률이다. 단, 우리 은하의 중력권에서 안드로메다 은하 중력권으로 옮겨 탈 확률은 있으나 어차피 두 은하는 끝내 하나의 거대 은하가 된다.
태양의 표면의 플라스마가 끓어 오르는 형태가 세포 집합처럼 보이는데 각 세포의 크기는 미국의 텍사스주만 하다. 링크
원래 태양 옆에 쌍둥이 별이 있었다는 가설이 나오고 있다. #
지구에서 일몰 때 서쪽에서 관측되는 태양은 파장이 짧은 빛들이 낮보다 더 많이 산란되어 주황빛을 띄며 지구에서 관찰한 달 만큼은 아니지만 보기에 상당히 황홀하다. 하지만 낮에 떠있는 태양은 빛이 너무 강해서 최소한 직접 쳐다보기가 어려울 정도다. 물론 태양을 우리가 지구에서 안전하게 관찰할 수 있는 이유는 지구의 자기장과 대기층의 영향으로 태양에서 방출되는 파장이 짧은 감마선이나 X선, 단파장 자외선이 지표면에 도달하지 못하기 때문이다. 물론 우주 공간에서 차폐막이 없이 태양빛을 직접 쬔다면 감마선을 비롯한 방사선을 직방으로 맞는 것이기 때문에 매우 위험하다.
태양빛의 스펙트럼을 관찰하면 노란색 계열의 빛을 가장 많이 방출하는 G2계열 항성이지만, 사실 모든 파장의 빛이 많이 섞여있기에 실제 지구 대기의 산란 현상이 없는 상태에서 맨눈으로 관찰하면 그냥 눈부신 백색이다.
3.1. 색[편집]
태양의 표면 온도는 5778 켈빈으로, 이는 분광형으로 G형에 속한다. 이를 근거로 흔히 태양을 노란색 별이라고 많이 칭하지만 이는 지구 대기의 산란에 의해 많이 왜곡된 색깔이다. G형 별의 실제 색깔은 (우주에서 아무런 방해 없이 관측했을 때) 푸른색이 약간 섞인 흰색[12] 이며, 실제로도 낮에 하늘 높이 뜬 태양은 흰색에 가깝다.[13]
더 자세히 설명하면 G형의 항성은 일관된 색을 지니고 있지 않다.[14] G형 중 뜨거운 편(태양 등)인 항성의 실제 색은 아주 미미한 푸른 빛을 띠는 흰색이며, G형 중 차가운 편(고래자리 타우 등)인 항성의 색은 완벽한 흰색이다. 별 색 정리
태양의 색은 지구에서 대부분(낮에) 흰색으로 보인다. 태양은 자외선, 가시광선, 적외선 등 넓은 스펙트럼의 빛을 내고 우리는 가시광선의 파장이 눈에 들어올 때, 무지개 색이 다 합쳐져 백색으로 보인다. 색은 인간이 파장을 시각적으로 구분하는 것이다. 다 들어와서 구분이 안 되니 백색으로 보이는 것. 동아일보 최준곤 고려대교수 주로 태양을 직접 볼 수 있는 때인 어스름에는 레일리 산란에 의해 적색~주황색으로 보인다. 이것이 태양이 붉은색이라고 착각하게 만드는 주된 원인.
문화에 따라 태양의 색을 다르게 봤는 데 이를 언어를 통해 이해할 수 있다. 한국어에서는 태양을 흰색으로 봤는데 이는 고대 한국어 시절까지 있다가 이후 사라져서 현대에는 남아 있지 않다. 다만 어원 정보로는 남아 있는데, '해', '희-', '하얗-'의 어원이 모두 ''로 같다. 태양을 흰색으로 본 까닭은 하늘 숭배 사상에서 가장 높고 고귀한 존재를 해, 즉 태양으로 봤기 때문인데, 하루 중 해가 가장 높고 강하게 떠 있을 때의 색이 흰색이기 때문이다. 이 때문에 한민족은 고대 시절부터 이미 흰색을 좋아했음이 사서에 기록되어 있고, 제식에서도 거울을 만들어 밝은 햇빛을 비추는 것으로 지도자의 권위를 상징했다.
중국도 태양은 청천의 백일이라고 하여 오래전부터 하얗게 인식한다. 중화민국의 국기 청천백일만지홍기가 대표적. 날 일(日)과 흰 백(白)의 파자 관계도 이를 뒷받침한다. 황제의 상징색이 노란색인 것과 태양의 색은 상관 없다.
이웃 언어인 일본어를 포함한 많은 문화권에서는 태양을 빨간색으로 봤는데[15] '붉은 태양'과 같은 상투적인 표현은 일본에서 먼저 활발히 쓰여 왔다. 단 오늘날 기준으로 우리가 태양을 붉은색과 연관짓는 것이 반드시 일본어적 요소라고 보기는 힘들다. 앞서 썼듯이 고대 이후 한반도에서도 '태양=>흰색'이라는 관념이 사라지면서 점차 다른 문화권처럼 '태양=불=붉은색'이라는 연상과정이 생겨났기 때문이다.
참고로 먼지나 구름 등에 의해 빛이 산란되는 경우는 미(Mie) 산란으로 설명해야 한다. 미 산란은 기본적으로 지구 대기를 구성하는 기체 분자들이 아닌 먼지와 같이 분자의 크기가 큰 에어로졸들에 적용된다. 미 산란은 레일리 산란에 비해 파장에 의존도가 적기 때문에 상대적으로 여러 파장대의 빛을 고루 산란시킨다. 따라서 먼지가 태양빛을 산란할 때는 콘트라스트를 감소시켜 노을이나 하늘빛이 뿌옇게 보인다. 흔히 노을의 원인 자체를 먼지 때문이라 이야기하며 미 산란을 적용시키려는 경우가 있지만, 부정확한 설명이다.
화성에서는 지구와 정반대로 석양이 파란색인데, 이유는 지구보다 대기가 엄청나게 희박하고(거의 1%) 그나마도 이산화탄소가 대부분이라 단파장이 산란되지 않으며 오히려 산화철을 비롯한 입자가 굵은 먼지들에 장파장이 산란되어 석양이 푸르게 보이게 된다. 즉 우리가 보는 태양의 색은 여러 가지 환경적 요인으로 왜곡되어 보이는 것임을 알 수 있다.
4. 구조[편집]
- 채층
태양 대기의 아랫부분에 위치하는 얇은 대기층으로, 붉은색을 띠며 개기일식이 시작되거나 끝날 때 잠깐 볼 수 있다. 광구 표면에서 약 3,000km ~ 5,000km 고도까지 존재한다. 광구의 1만분의 1, 해수면 위 지구 대기의 약 1/100,000,000 정도의 밀도로 극도로 희박하며, 광구가 더욱 밝기에 평상시에는 보이지 않는다. 채층은 H-alpha 필터를 사용하여 볼 수 있다. 왜냐하면 채층에서 수소의 발머선인 H-alpha선(656.3nm, 붉은색)이 가장 강하게 방출되기 때문이다. 또한 개기일식 때 붉은색으로 빛나는 채층을 관측할 수 있다. 채층은 고도가 높아질수록 온도가 높아지며, 코로나까지 가서는 급격하게 상승한다.[온도변화]
- 광구
태양에서 실질적으로 빛이 나오는 구역으로 우리가 보통 태양의 표면으로 인식하는 '빛을 내는 구체'를 상상하면 된다. 온도는 약 5,800K이다. 영역이라기보다는 두께가 없는 한계지점 정도로 이해하기 쉽지만 사실 광구 또한 두께를 가지고 있는데, 이는 태양이 완전히 불투명한 것이 아니기 때문이다. 따라서 광구의 영역은 태양 표면에서 내부로 약 수백 km정도까지 연장된다. 현대에 와서 정립된 정의로는 약 50%의 빛이 산란되지 않고 투과할 수 있는 깊이까지를 광구라 칭한다. 지구 전체를 비춰주는 눈부신 태양빛이 방출되는 구역이지만 태양의 구조 중 온도가 가장 낮은 영역이기도 한데, 이는 태양 표면을 벗어나고 나서는 오히려 온도가 올라가기 때문이다.
- 대류층
태양 반지름의 0.7배부터 태양 표면까지의 영역. 복사층보다 온도가 낮아 이온화되지 않은 수소가 많기 때문에 불투명하다. 따라서 복사보다는 주로 대류를 통해 열이 전달된다. 태양 표면에서 많은 수의 쌀알 무늬들이 보이는 것도 우리가 대류층의 단면을 보고 있는 것이기 때문. 태양의 자기장은 대류층의 플라스마 대류로 인해 발생한다고 생각되며, 외핵의 대류로 인해 자기장이 발생하는 지구와 달리 매우 역동적인 자기장이 발생한다.
- 복사층
핵에서부터 태양 반지름의 0.7배까지의 영역으로 대부분 이온화된 수소로 이루어져 있다. 주로 복사를 통해 열이 외부로 전달되기 때문에 이러한 이름이 붙었다. 빽빽한 플라스마 상태라 복사가 직진하지 못하고 전자에 흡수 → 재방출 → 다시 전자에 흡수...를 반복하며 에너지가 전달되므로 핵에서 발생한 에너지가 복사층을 통과하는 데는 대단히 오랜 시간이 걸린다. 태양의 경우 에너지가 복사층을 완전히 통과하는 데 평균적으로 약 17만 년이 걸리는 것으로 알려져 있다.
- 핵
태양의 가장 중심부에 위치한 구조이다. 태양 반지름의 약 0.2배 정도까지의 영역을 칭하며 온도는 1570만K정도로 가장 높다. p-p 반응에 의한 수소 핵융합이 이루어지는 태양의 에너지원이다. 의외로 핵융합 발전에서 목표로 하는 점화 온도(약 1억 도)에 비해서는 낮은 편인데, 이는 태양 중심부의 압력이 워낙 높아(약 2,600억 기압) 이 정도온도로도 충분히 핵융합이 가능하기 때문이다. 이 단계에서 태양은 헬륨을 연소할 수 없기 때문에 핵융합에서 생겨난 헬륨은 중심부에 뭉쳐져 핵을 형성한다. 따라서 실제로 핵융합이 이루어지는 구역은 헬륨 핵을 중심으로 구각 형태를 띠게 된다.
태양의 가장 바깥쪽에 위치한 희박한 대기층이다. 태양 본체에 비해 그다지 밝지 않기 때문에 평소에는 보이지 않지만 개기일식이 일어나면 관측할 수 있다. 온도는 약 1,000,000K 정도로 높기 때문에 강한 X선을 방출하며, 극히 높은 온도에 의해 철이 전리된 Fe+9와 Fe+13이온에 따른 금지선(각각 [Fe X]와 [Fe XIV]로 표기)이 관찰된다.[17] 5,000 ~ 6,000K에 불과한 태양 표면보다 코로나가 200배나 높은 온도를 가지고 있는데, 태양이 에너지를 등방적으로 방출하는 아주 단순한 구조를 가지고 있다는 가정을 할 경우 안쪽보다 바깥쪽의 온도가 더 높은 이 현상은 열역학 제2법칙에 정면으로 위배되는 것처럼 보인다. 이 문제를 코로나 가열 문제라고 하며 가장 유력한 설은 태양 표면에서 제트처럼 분출되는 기체가 코로나 속에서 초음속이 되어서 저항을 받아 운동에너지가 열에너지로 변하기 때문이라는 것이다. 아직까지 이를 명확하게 설명해주지 못하기 때문에 태양 천문학의 주요 떡밥이다. 자세한 것은 해당 문서로.
5. 태양 관련 물리량[편집]
5.1. 태양 질량[편집]
태양의 질량(기호 M☉)은 약 2×1030kg[18] 이며 이는 지구 질량의 약 330,000배, 목성의 약 1,048배에 해당한다. 태양계의 모든 천체를 싸그리 박박 긁어 모아도 전체 태양계의 질량의 무려 99.866%를 태양이 차지하며, 다른 모든 천체들의 합은 고작 0.134%에 불과하다.[19]
태양은 여키스 분류법상으로 Ⅴ로, 왜성(dwarf)에 속한다. 물론 태양은 엄연히 주계열성이다. 같은 시대에 여러 연구 기관이 독자적으로 연구를 진행하다보니 일어난 일로 현직에 있는 사람들도 조금 곤혹스러운 분류. 즉, 여키스 분류법에서의 왜성 = 일반적으로 이야기하는 주계열성이다. 이와 관련 된 이야기를 할 때는 진짜 작은 별을 뜻하는 왜성과 구분하기 위해 앞에 '여키스 분류에서~'가 따라다니는 편이다. 혹은 무시하고 주계열성이라고만 이야기 할 수도 있다.
과거에는 태양이 아주 작은 편에 속한다는 고정관념이 있었는데 이는 적색왜성의 연구가 미흡했던 시절에 생겨난 말이다. 관찰하기 어려웠던 적색왜성은 물론 갈색왜성까지 제외한 상태에서 태양의 크기는 과소평가 될 수 있기 때문이다. 과거 오래된 천문학 관련 백과사전이나 어린이 학습물에서는 이러한 잘못된 정보가 기재된 경우가 있었으나 실제로 태양은 우주에서 상위 1% 정도의 질량을 가진 G형 주계열성이다.
실제로 우주에 있는 항성들의 평균 질량은 태양의 15% 수준이다. 그 이유는 우주 항성의 70%는 태양 질량의 50% 이하일 뿐인 적색왜성들이기 때문이다. 이들은 너무 어두워서 조금만 떨어져도 인간의 눈으로 못 본다. 이들은 보통 0.4광년만 떨어져도 안 보이는 반면에, 태양은 0.4광년은 물론 10배인 4광년이 떨어져도 매우 밝게 보이고[20] 90광년까지는 육안 관측이 가능하다. 나름대로 태양을 어머니 항성으로 지닌 지구는 흔치 않은 항성을 주인으로 삼는다고 볼 수 있다.
일반인들은 질량을 이용한 계산들을 안 하기 때문에 천문학자들이 매번 kg 단위를 사용해서 수십 자리 정도의 수를 한 번에 계산하는 줄 아는 경우가 흔한데, 태양의 질량은 천문학에서 가장 많이 쓰이는 질량 단위이기도 하다. 그 값도 적당히 크면서 비교적 가까운 거리에 있는 만큼 정확하게 측정할 수 있기 때문이다. 기호로는 질량을 뜻하는 M에 태양을 뜻하는 ⊙를 아래 첨자로 붙여 표현한다. 태양 질량 외에도 목성 질량과 지구 질량을 사용한다.
5.2. 태양의 밝기(태양 광도)[편집]
태양의 광도는 L☉라는 기호로 표기하며 그 값은 3.828×1026W이다. 항성의 광도를 표기할 때 일종의 단위로써 사용되기도 한다.
지구에서 맨 눈으로 관측 가능한 천체 중에서 태양은 다른 별과는 비교가 불가능할 정도로 독보적으로 밝은 천체다. 지구에서 보이는 실시등급은 무려 -26.74등급으로 2위인 보름달(-12.6등급)보다 450,000배나 밝다. 비단 하늘 뿐만 아니라 가히 지구상에서 가장 밝은 광원이라고 봐도 무방하다.[21] 일상 생활에서 태양보다 밝게 빛나는 것은 찾아보기 힘들다. LED 문서에 나와있는 90,000루멘짜리 전등 10개를 1제곱미터 넓이에 집중 조사해야 겨우 태양과 비슷한 수준의 밝기가 나온다.
5,900,000,000km나 떨어진 명왕성에서 보는 태양빛이 지구에서 보는 보름달보다 250배나 밝으며,[22] 지구에서 태양빛을 장시간 정면으로 바라보면 실명할 위험이 있을 정도이다.[23] 이 문서 위에 있는 영상과 같은 이미지는 실제로는 카메라에 들어오는 빛의 양을 엄청나게 낮춰서 찍은 것이다.[24] 때문에 흑점같이 상대적으로 어두운 부분은 이미지에서 검게 보인다. 실제로 많은 사람들이 흑점을 태양 표면의 검고 어두운 부분이라고 생각하는 경우가 많은데 이는 밝기를 낮춘 화면상에서 보이는 이미지일 뿐 인간의 시선으로 본다면 흑점도 어마어마하게 밝은 편이다.
망원경, 쌍안경, 돋보기, 현미경, 심지어 원시용 안경 등 모든 확대 장비를 다룰 때 0순위 중의 0순위로 지켜야 할 규칙이 바로 '태양을 향하지 마시오'이다. 망원경이든 쌍안경이든 스코프든 기본적인 원리는 넓은 동공으로 향상된 시력을 제공하는 것. 즉, 빛을 모으는 장치다. 1억 5천만 km 떨어진 지구에서도 맨눈으로는 순간적으로조차 쳐다보기 어렵고, 돋보기로 검정도 아닌 살색 피부에 잠시 집광하는 것도 위험한 태양빛을 이러한 광학 장비로 본다는 것은 문자 그대로 돋보기로 눈을 지지는 고문이나 다름없는 행위다. 구경 3cm 남짓 되는 파인더도 여러분의 눈을 태워먹기에는 충분하니 크기가 작다고 방심해서는 안된다. 특히 필터를 끼워 태양 관측을 할 때 파인더용 태양 필터는 없는 경우가 대부분이므로 실수로라도 보는 경우를 막기 위해서 파인더는 아예 빼 놓자. 천체망원경으로 태양을 관찰할 때는 접안렌즈를 지나 초점이 맞는 곳에 열에 강한 흰색 판을 갖다 놓아 거기에 맺힌 상을 본다. 이것을 투영법이라고 하는데 접안렌즈를 나와 판으로 향하는 빛이 레이저처럼 옆에서 육안으로 보이는 수준이며 렌즈가 과열로 녹아 버릴 위험이 있어 일정 시간마다 교체하거나 냉각해야 한다. 천문대에 단체 견학을 갔을 때 투영법으로 태양을 관측하는 활동이 있다면 빛의 경로에 나무토막 같은 것을 대서 타는 모습을 보여주기도 한다. 실제로 한 고등학교에서 친구에게 장난을 친다고 천체망원경을 태양으로 향하게 하고서는 보게 만든 사고가 발생했는데, 피해자가 아주 잠깐 눈을 댔다가 바로 뒤로 물러난 수준이었음에도 원래 정상이던 시력이 0.3까지 떨어지는 영구적 시력손실을 입었다. 절대로 망원경을 통해 태양을 직접적으로 관찰하려고 하면 안된다.
위의 사례처럼 천체망원경이나 기타 망원경으로 관측하는 수준이 아니라 그냥 DSLR 줌렌즈로 촬영하는 선에서도 당연히 태양촬영 전용 감광필터를 사용해야 하는데 ND 100000필터의 경우 0.001%의 투과율을 가졌다. 십만분의 일의 투과율이라는 소리다! 그럼에도 필터 제조사에서는 촬영시 광학용 뷰파인더로 태양을 직시하는 것을 엄격히 금지하고 있다. 라이브뷰[25] 로만 보라는 것이다. 이 필터가 일상에서는 동적인 느낌을 살리기 위한 장노출을 위해 쓰는 필터인데 설정에 따라 다르지만 5분을 노출촬영해도 우리 눈에 어둡게 보이는 사진이 나올 정도인데 태양 촬영에는 그런 거 없고 그냥 찰칵! 수준이어도 매우 밝게 나온다. 때문에 태양을 향해 광학장비를 사용할 때는 이러한 점들을 필히 숙지하고 가야한다. 장비도 장비대로 고장나지만 관측, 촬영자의 시력이 충분히 위협받을 수 있다.
태양의 절대등급은 4.8등급으로 어두운 별이라고 착각하기 쉽지만, 25광년 이내에 있는 주변 별 172개 중에서 태양보다 밝은 별은 일곱 뿐이다.[26] 다만 밤하늘에서 인간의 눈으로 볼 수 있는 별들의 상당수는 분광형으로 치면 B나 A로 태양보다 훨씬 더 밝고 희귀한 별들이다.
태양은 수소를 태우는 동안 10억 년마다 밝기가 10%씩 증가한다.태양과 지구, 어떤 것이 먼저 끝날까?[27]
5.2.1. 태양빛[편집]
태양이 내뿜는 빛은 다양한 파장의 전자기파를 포함한 백색광으로, 그 자체에도 상당량의 에너지가 있다. 지구는 태양이 발산하는 에너지의 아주 일부만 받는다. 단순 계산으로 공전 궤도를 원형이라 생각하면, 지구는 반경 1억 5천만 km의 구면에서 반경 6,400 km의 원에 해당하는 부분만 에너지를 받는다.
한편 우리가 보는 태양은 8분 19초 전의 태양인데, 이는 태양빛이 광구를 탈출하여 지구까지 도달하는 데 8분 19초가 걸리기 때문이다.
따라서 만약 태양이 한 순간에 파일을 삭제하듯 사라진다면, 8분 19초 동안은 하늘에 태양이 보이지만, 8분 19초가 지나면 갑자기 하늘이 한 치 앞도 내다 볼 수 없을 정도로 컴컴해지는 동시에 태양이 하늘에서 사라질 것이다. 그리고 동시에 지구는 공전 궤도를 이탈할 것이다. 왜냐하면 중력파의 속도가 빛의 속도와 같기 때문.
또, 우리가 보는 태양빛은 평균 17만 년 전의 빛이기도 하다. 왜냐하면 태양의 핵에서 생성된 빛이 광구까지 나와서 방출되기까지 약 17만 년이 걸리기 때문이다. 태양의 반지름은 대략 70만 km로 빛의 속도로 약 2초 정도가 걸리는 거리지만, 태양의 내부에서 엄청난 양의 전자들과 부딪히면서 빛의 이동거리가 길어지기 때문에 결과적으로는 17만 년 정도 걸린다. 감마선의 형태로 방출된 핵융합 에너지는 태양 내부에서 여러 입자 사이에서 반사되어 떠돌며 차츰 에너지를 잃고 광구에 도달하면 주로 가시광선의 형태로 우주 공간에 방출된다.
5.2.2. 일상생활에서의 체감상 태양의 밝기[편집]
보통의 서적이나 교재, 인터넷 문서 등에서 태양의 밝기에 대해 조사하면 겉보기 등급 -26.7등급, 절대 등급 4.8등급 등등 천문학적인 관점에서만 기술되어 있기 때문에, 우리가 일상생활에서 자주 쓰는 광원인 전구나 방 전등 등과 비교했을 때 구체적으로 얼마나 밝은 지에 대해서는 제대로 들어본 적이 없었을 것이다.
구체적인 비교에 앞서, 일상생활에서 밝기의 단위로는 lux를 사용한다. 이는 단위 면적 당 내리쬐는 빛 선속, 또는 광속[28] 에 대한 국제 표준 단위이다. 예를 들어, 전구에서 발산하는 광자 하나하나를 빛의 화살 같은 것으로 생각하여, 단위 면적당 얼마나 많은 화살이 내리꽂히는가를 설명하는 단위가 바로 lux라고 생각하면 된다. 반대로 전구 그 자체가 얼마나 많은 화살을 방출하는지에 대한 단위는 lumen이며, 이 루멘을 면적으로 나눈 것이 바로 럭스이다. 참고로 평범한 가정의 거실 밝기는 약 300 lux이다.[29][30]
이 lux를 이용해 여러 예시들을 서로 비교해보면 태양이 얼마나 독보적으로 밝은 것인지 몸소 체감할 수 있다. 아래 표를 인용해 보자.
위의 수치들을 인용해서 말하면 매우 가변적이다. 스마트폰에서 조도 센서 앱을 깔면 남녀노소 누구나 쉽게 해당 위치의 밝기를 측정할 수 있는데, 전등과 얼마나 떨어져 있느냐에 따라 밝기가 매우 크게 바뀐다.
예를 들어 한밤 중 가로등 근처에서 밝기를 측정하면 바로 아래에 서서 재면 300에 육박하지만 가로등과 충분히 멀리 떨어지면 lux가 한 자리 수까지 떨어지다가 이윽고는 0이 된다. 이는 핸드폰 조도 센서가 소숫점까지 정밀하게 측정하지 못하기 때문. 물론 사다리 같은 것을 타고 올라가 가로등 앞에 폰을 바짝 붙이면 태양빛에 필적하는 밝기가 측정될 것이다. 바꿔 말하면 한밤중에도 사람이 충분히 생활할 수 있도록 해줄 정도로 밝은 가로등을 바로 코앞에서 바라봐야 비슷한 밝기를 느낄 정도로 태양빛의 밝기가 어마어마하다는 뜻이 된다. 가로수 하나하나마다 가로등을 부착해도 대낮보다는 훨씬 어둡다.
또한 유튜브 등지에서 개기일식을 관측하면 서서히 깜깜해지는 것이 아니라 태양의 99%가 가려진 순간에조차 환하다가 갑자기 어두워지는 것을 발견할 수 있다.
위의 표를 보면 알겠지만, 태양의 99%가 가려져도 lux는 1000을 넘으며 대부분의 실내 공간은 아무리 밝아도 500 내외를 넘지 않는다는 것을 감안하면 주변이 아주 환하게 보이는 것은 당연하다. LED 독서등을 최대 밝기로 세팅한 후 바로 아래의 책상에서 밝기를 측정하면 대략 1000 lux가 나온다. 보통 책 등을 놓는 위치에서는 500~600 lux. 밤이나 실내에서는 상대적으로 동공이 커지기 때문에, lux가 세 자릿수를 넘어가면 오히려 눈부셔서 공부에 방해가 된다.
하지만 인간이 밝기를 체감하는 데 있어 가장 중요한 요소를 간과하면 안 되니, 그것은 바로 동공이다. 동공이 작을수록 빛이 망막에 적게 비친다는 것을 이용해 동공의 크기는 끊임없이 조절되는데, 예를 들어 사람은 밤에 자려고 방불을 꺼도 시간이 지나면 주변 사물을 잘 인식할 수 있게 되는 것이 대표적이다.
혹은 커튼이 매우 두꺼워 빛을 굉장히 잘 차단하여 방이 매우 깜깜한 상태에서 갑자기 커튼을 쳐 아침 햇살이 방을 그대로 직격할 때 눈을 못 뜰 정도로 너무 눈이 부셨던 경험을 한적도 있을 것이다. 즉 위의 표에서 직사광선은 인간들의 인공 조명보다 압도적으로 밝은 것이 사실이나, 밤에는 빛을 더욱 잘 인식할 수 있도록 동공이 넓어지기 때문에 실제로 체감하는 밝기 차이는 수치적 차이보단 훨씬 적을 것이다.
실제로 동공이 충분히 넓어져 어두움에 적응이 되면 달빛만 비추어도 글자를 읽을 수 있을 정도가 된다. 달빛은 생각보다 상당히 밝아서, 실제로 해안에서 경계 임무를 맡는 군인에게 있어 달의 위상과 월출/월몰 시각은 매우 중요한 요소이다.
5.3. 태양 반지름[편집]
태양의 반지름은 R☉이라는 기호로 표기하며 그 값은 약 696,340km이다. 태양 반지름은 항성의 반경을 표기할 때 단위로써 사용되기도 한다.
6. 태양의 자기권[편집]
2016년 3월 12일 NASA가 촬영한 태양 자기권 그림. 링크 수많은 실선들로 표시된 부분, 그러니까 높이 뻗지 못하고 도로 태양으로 들어가는 자기권은 흑점하고 코로나에서 방출되는 자기권이다.
태양 자기장은 태양계 전체를 홀로 지탱할 정도로 매우 강력하다. 그리고 극성을 가지긴 했는데 흑점, 코로나 영향이 훨씬 더 크다. 태양계 행성들은 천왕성과 해왕성같이 자기장 축이 자전축과 어긋났을지언정 일정 방향을 향하는 자기권을 가졌다. 그런데 태양은 항성이라 자기권이 매우 특이한 모양이다. 물론 태양도 N극과 S극은 있다. 지구자기장은 "북극이 S극이고 남극이 N극"인데, 2016년의 태양은 "북극이 N극이고 남극이 S극"이 나온다. 즉 태양에 자석을 가져가면 S극이 북쪽을 가리키고 N극이 남쪽을 가리키게 된다. 단, 흑점과 코로나가 워낙 강력해서 자석이 흑점, 코로나 방향으로 핑핑 돈다는 게 큰 차이점. 물론 11년마다 자기극이 역전되기 때문에 큰 의미는 없다.
태양 자기권이 특이한 모양인 이유는 태양이 항성으로 핵융합을 직접 하기 때문이다. 태양 같은 항성의 자기장은 행성들의 자기장과는 달리 플라스마의 대류로 인해 형성된다. 이 때문에 태양 자기장의 활동은 매우 역동적이며, 지구에서는 몇만 년에 한 번꼴로 일어난다는 자기극의 역전이 11년에 한 번씩 일어난다. 태양의 경우 적도에서 측정한 자기장의 강도는 지구 적도에서 측정한 자기장의 약 두 배 정도인 평균 50마이크로테슬라 정도이다.
고에너지 입자의 황(S) 대비 규소(Si) 성분이 태양 대기에서 가장 아래에 있는 채층의 상부에 억제돼 있는 플라스마와 같다는 것을 확인했다. #
7. 태양의 공전(단위: 은하년)[편집]
태양은 우리 은하의 중심부를 기준으로 2억 2,500만 ~ 2억 5,000만 년에 한번씩 공전한다. 2000년대까지만 해도 2억 년을 1은하년으로 추정했으나 우주 공간의 팽창과 우리 은하의 추정 형태가 변경(정상나선은하 → 막대나선은하)됨으로 인해 공전 주기 추정치가 2.25억 ~ 2.5억 년으로 늘어났다.
태양의 공전 주기(2억 2,500만~2억 5,000만 년)를 1은하년이라고 한다. 태양의 나이가 약 50억 년이니 최소한 20번 이상 태양이 우리 은하 중심부를 향해 공전을 하고 있는 것이다.
태양의 공전 속도는 약 200㎞/s이다.[51] 태양계에 있는 그 어떤 행성이나 왜행성, 소행성들도 태양의 공전 속도를 넘어서지 못한다. 태양계에서 태양보다 빠른 공전 속도를 보이는 천체는 혜성들, 그 중에서도 장주기 혜성들 뿐이다.
태양은 공전 도중에 6400만 년 마다 우리 은하의 오리온자리 팔을 아래로 통과했다가, 팔을 위로 통과했다가, 오리온자리 팔 부근으로 돌아온다. 즉 수평에 가까운 태양계 행성들의 공전궤도와 달리, 태양의 공전궤도는 수직적으로도 고도 차이가 있다.
8. 태양에서 일어나는 현상[편집]
- 프로미넌스(홍염)
- 필라멘트
H 알파 선으로 태양을 관측했을 때 태양 광구에서 발견되며, 길고 어두운 줄의 형태를 띠고 있다. 사실 프로미넌스와 동일한 현상이며 지구에서 보이는 태양 원반의 가장자리가 아닌 곳에서 일어났을 때 필라멘트로 관측된다.
태양의 광구 바로 위 채층에서 일어나는 현상으로 잔디 같이 삐죽삐죽한 형태로 관측되는 가스 기둥이다. 태양 표면에서 빠른 속도로 가스가 뿜어져 나올 때 나타난다. 코로나(태양의 '대기')가 태양 표면보다 훨씬 뜨거운 원인이 스피큘이라는 설이 있으며, 실제로 2019년 말에 빅 베어 태양 관측소에서 스피큘이 분사되는 순간을 촬영했는데 그 온도가 백만 도에 달했다.
- 코로나 질량 방출 (Coronal Mass Ejection)
코로나에서 일어나는 대규모 가스 폭발로 주로 플레어가 발생한 뒤의 후폭풍으로 나타난다. 이 현상으로 강한 태양풍이 발생하기 때문에 지구에서는 오로라가 나타나고, 전자기기가 먹통이 되거나 정전이 일어나기도 한다.
8.1. 탄생부터 현대까지[편집]
태양은 현재 약 45억 6721만 살이며, 앞으로 약 79억 3100만 년간 핵융합을 할 수 있다. 연구가 불충분했던 2000년대 이전에는 서적에 50억 년 남았다고 기재된 경우가 많았다.[52]
약 45억 년 전 원시 태양계의 모체가 되는 성운이 모종의 이유로 압축되기 시작한다.[53] 10만 년 후 성운 중심에는 태양을 포함한 여러 원시성들이 탄생하게 된다.
약 3,500만 년간 지속되는 원시성 시절 동안 태양은 주로 중력수축에서 발생하는 에너지와 리튬, 중수소를 태우며 나오는 열로부터 빛을 내는데. 이로부터 나오는 에너지는 현재 태양보다 더 많았지만, 대부분의 빛이 태양을 두껍게 둘러싼 먼지 띠에 흡수되어 적외선으로 재방출되었다. 중력 수축 에너지는 오래가지 못하며 원시 태양은 계속해서 줄어 들며 어두워졌다.
태양이 수축을 거듭하여 중심부의 밀도와 온도가 충분히 높아졌을 때 수소 핵융합이 점화되었다. 이후 태양은 주계열성의 삶을 시작한다. 일반적으로 이 시점부터 항성으로 취급한다. 천문학 용어로는 이 시점을 영년주계열이라고 부른다.
막 주계열성이 된 태양은 현재의 약 80% 정도 밝기였고, 이 시기 태양은 수소뿐만 아니라 리튬, 베릴륨, 붕소 등의 잉여 연료를 같이 태우면서 에너지를 생성하였다. 이들 잉여 연료들이 점차 고갈되면서 태양의 밝기는 약 43억 년 전까지 꾸준히 감소하여 현재의 70%까지 떨어졌다. 주계열성이 시작된 이후 이 3억 년 정도의 기간을 구분지어 원시 주계열 단계로 부르기도 한다. 원시 주계열은 원시성과는 완전히 개념이 다르다. 원시성은 수소를 못 태우지만 원시 주계열성은 수소를 태운다. 다만 원시 주계열은 내부에 리튬, 베릴륨, 붕소 등이 아직 남아 있어 수소와 함께 이들을 태우는 기간이므로 구분지어 부른다. 다만 원시 주계열 기간을 구분짓지 않고 수소 핵융합을 시작한 시점을 영년 주계열로 하여 싸그리 공통 주계열 단계로 포함시키는 경우가 더 많다. 하지만 엄밀하게 구분하면 이렇게 기간을 나누는 것이 맞다.
원시 주계열을 벗어난 태양은 수소 핵융합을 지속하며 중심부에는 그 결과물인 헬륨이 쌓여 핵을 형성한다. 아직 태양은 헬륨을 융합하지 못하기 때문에 수소 핵융합이 이루어지는 구역은 중심부에서 점차 바깥쪽으로 밀려나 구각을 이룬다. 이 결과로 태양의 에너지 생성률이 조금씩 증가하여 마침내 현재의 광도에 도달한다. 태양의 나이는 약 46억 살, 표면온도는 5,778K에 분광형은 G2 V이다.
8.2. 미래[편집]
태양은 109억 살(약 63억 년 후)까지 비교적 안정적인 주계열성 단계에 머물지만 밝기는 조금씩 증가한다. 약 7~10억 년 후에는 너무 밝아진 태양으로 인해 지구의 온도가 올라가 거의 대부분의 생명체가 사라지게 된다.[54][55] 생명체가 멸종한 후 1억 년도 채 지나지 않아 지구의 온도는 온실 기체가 쌓여 물이 끓는점에 도달[56] 한다. 태양은 앞으로 48억 년 후에 표면 온도가 5,848K까지 올라가 정점을 찍고 1.7배까지 밝아진다.[57] 이후 태양의 표면 온도는 점차 내려간다. 이때 지구의 기압은 150기압에 이르고 온도는 500도로 매우 뜨거워진다. 쉽게 말해서 금성과 비슷한 환경이 된다.
109억 살 이후부터는 태양은 분광형 G5IV인 준거성이 되며 약 2.2배까지 밝아지고 온도가 약 5500K정도가 된다. 준거성 단계에서는 서서히 밝기를 키우며 116억 살에 적색거성 단계에 들어선다. 표면온도는 5,270K(분광형 G8III)까지 낮아지고 밝기는 5배에 이른다. 지구는 온실기체가 극도로 쌓이고 현 시점보다 3.5배 이상 밝아진 태양의 나이 115억 살부터 온도가 섭씨 1,000도 이상 올라가 대기를 잃기 시작한다. 118억 년 후 태양열로 지구의 대기는 몽땅 사라진다.
122억 살에는 3,000배까지 밝아지며 지름도 160배까지 커지는데[58] 이때 지구 궤도 이상까지도 커질 수 있다. 태양은 첫 번째 적색 거성 단계에서 28%의 질량을 잃는다.
이 단계에서 수성, 금성까지는 태양에 삼켜질 것이 확실하나 지구는 불확실하다. 지구 궤도를 집어삼킬 만큼 부피가 팽창하리라 예상되지만, 동시에 상당한 질량을 잃어서 중력이 약해지고 지구의 공전 궤도 또한 커져서 파괴되지 않을 수도 있다. 이때 태양 대기권 안으로 들어갔다고 행성 자체가 녹거나 하지는 않는다. 대기가 희박하기 때문. 만약 예상보다 더 안쪽으로 들어갈 경우 태양 대기의 영향으로 공전 속도가 점점 느려지며 안쪽으로 낙하하다가 태양의 조석력과 열기 때문에 조각조각으로 부서져 해체되고 결국 소멸한다.
첫 번째 적색 거성 단계가 끝날 무렵 중심 핵 온도는 약 3억 K까지 올라가 중심부에서는 헬륨 섬광이 일어나고 이후 태양이 수축하기 시작하며 두 번째 주계열 단계라고도 할 수 있는 수평계열 시기를 맞이한다. 태양은 약 1억 년 간 안정적으로 헬륨 핵융합을 하며 이때 밝기는 약 50배까지 줄어든다.[59] 하지만 헬륨이 고갈된 이후 태양은 급격히 밝아지기 시작하여 현 시점의 110배까지 밝아진다. 태양이 혼자서는 뭔 짓을 해도 태울 수 없는 탄소와 산소가 중심부에 쌓이게 되며 그 중심핵의 크기는 태양의 50% 수준까지 커지게 된다. 중심부 온도는 3억 2,000만 K까지 올라가며, 중심핵 바깥인 복사층의 헬륨과 수소가 폭발적인 핵융합을 일으키고 2000만 년만에 태양은 최대 8000배까지 밝아진다. 이 시기를 점근 거성 단계라 하며 태양이 일생 중 가장 밝은 기간이다. 크기는 400배까지 부풀어 화성 궤도까지 삼켜버린다.[60] 이 때도 궤도가 늘어나 지구, 화성이 삼켜지지 않을 수 있다.
점근 거성 단계 말기에 태양은 연료가 소진되어 수축하다가 헬륨이 점화되어 다시 폭발적으로 팽창하는 열맥동을 반복하게 된다. 이 과정에서 표면에 있는 대규모 질량을 방출하며, 마지막 질량을 낼 때 아름다운 행성상 성운을 만들며 중심에 질량 절반 가량만 남은 중심핵이 드러나 지구 크기 정도의 백색왜성이 형성된다. 행성상 성운은 12,000년간의 짧은 기간만 존재하고 백색왜성만 남는다. 그 직후 멀리 있는 천체부터 아주 서서히 태양의 중력에서 벗어나기 시작한다. 다만 태양과 가까이 있었던 천체들은 태양쪽으로 끌려올 가능성이 높다.
막 나온 약 124.7억 살의 백색 왜성은 10만 K이 넘어 뜨거운 푸른색으로 빛나지만 점차 식어간다. 이 백색 왜성을 지금 태양 위치에 가져다두면 지구에서 봤을 때 최대 보름달 정도의 밝기로밖에 보이지 않는다. 280억 살 즈음에는 온도는 약 2400K, 지름은 지구의 약 1.4배, 질량은 태양의 54%, 광도는 태양의 0.0000048배가 된다. 광도가 너무나 낮고 중력이 약해지며 거리가 더 멀어진 태양계의 행성들에게는 빛과 열이 거의 전달되지 않기 때문에 행성들도 얼음과 암흑천지에 잠긴다. 모든 연료를 소진하고 그저 한때 타오르던 용광로의 잔열만을 내보내는 태양은 더 이상 항성이 아니다.
그 후에는 그저 남은 행성들과 함께 아득할 정도로 긴 시간 동안 우주를 떠돌다가 은하의 중심 초대형 블랙홀로 끌려가 흡수되던지, 아니면 아예 은하의 중력권에서도 튕겨나가 완전한 떠돌이 별이 될 것이다. 이 시점에서 이미 한참 전에 우리 은하와 안드로메다 은하가 충돌하여 밀코메다가 형성된다. 이 충돌 과정에서 복잡한 중력 간섭으로 태양계가 중심부로 끌려갈 수도 있고, 아니면 은하 중력권에서 튕겨나가 떠돌이 항성이 될 수도 있다. 튕겨나가지 않는다면 궁극적으로 은하 중심 블랙홀에 흡수될 것이다.
별이 파괴되지 않아도 수백~수천조 년 후에는 잔열마저 완전히 사그라들어 흑색왜성이 되어 어떠한 빛과 열도 내지 못하게 된다. 태양계가 그때까지 유지되고 있다면, 태양계의 행성들은 죽어버린 태양과 함께 조용히 우주를 떠돌다가 1000억~1000조 년이면 여러 작용들을 받아 행성들이 다 튕겨나가 태양계가 해체되어 백색 왜성만 홀로 남는다는 주장이 있다. 약 1해 년 후에 모두 태양의 중력에 이끌려 충돌해서 사라질 것으로 추측된다는 말도 있다. 자세한 것은 태양계 문서의 '미래' 문단으로.
흑색왜성이 된 태양이 블랙홀에 흡수되지 않는다면 그 뒤의 운명은 양성자 붕괴가 있냐 없냐에 따라 갈린다. 양성자 붕괴가 있다면 400W의 에너지를 발산하며 서서히 질량을 잃다가 목성 정도의 크기까지 늘어난 뒤 줄어들어 소멸한다. 또한 양성자 붕괴는 원자 번호를 낮추므로 구성 성분도 탄소에서 수소와 헬륨으로 변한다. 양성자 붕괴가 없다면 구성 원소들이 양자 터널링으로 인해 융합되어 101500년 뒤에는 철 별(Iron Star)이 될 것이다. 철 별이 된 태양은 [math(10^{10^{26}})]년 후에는 양자 터널링으로 인해 서서히 압축되어 결국 블랙홀로 붕괴할 것이다. 블랙홀이 된 태양은 [math(10^{10^{120}})]년에 걸쳐 호킹 복사에 의해 증발해서 소멸한다.
9. 태양의 종류[편집]
태양과 같은 질량의 별은 기껏해야 탄소 정도까지 핵융합할 수밖에 없기 때문에 철 등의 금속은 태양이 자체적으로 만들 수 없다. 따라서 태양 이전에 태양의 자리에 훨씬 뜨겁고 큰 별이 철까지 생성해내고 터져서 자신을 이루던 물질들을 우주 공간으로 흩어낸 잔해들에서 태양이 만들어졌음을 알 수 있다.[61] 태양 이전의 1, 2세대 별들은 태양보다 질량이 커서 짧은 기간에 일생을 다했기 때문에 태양이 우주 탄생[62] 90억 년 후에 생성 됐음에도 이전에 별들이 진화하고 터진 뒤 잔해들이 몇 번이나 다시 새 항성을 생성할 수 있을 만큼 시간이 있었던 것이다. 자세한 내용은 적색초거성 문서로.[63]
10. 문화[편집]
“하늘 아래 두 개의 태양은 없다.”
『예기(礼記)』 증자편(曾子篇) 中
태양은 우주에 있는 수많은 항성들 중 하나이지만 인간뿐 아니라 지구의 모든 자연 현상과 생명체에게 중요성이 막대한 천체이기에, 각종 신화나 전설에서도 신 내지 신급의 위대한 존재로 등장하며 신 중에서도 위상이 매우 높은 것이 일반적이다. 또한 전세계적으로 태양과 관련된 신의 수도 매우 많다. 아무래도 인류에게 있어 종교의 역사 이전부터 경외감을 느끼기 좋은 대상이었기 때문으로 보인다. 심지어 한 신화에 태양을 상징하는 신성이 다섯 이상일 때도 있다. 가장 유명한 태양신으로는 이집트 신화의 라, 그리스 신화의 아폴론, 일본 신화의 아마테라스[64] 가 있다. 세계의 태양신 목록
뭔가 대단한 것을 이를 때 태양에 비유하곤 하며, 보통 유일하고 대체할 수 없으며 강력한 존재를 상징한다. 루이 14세의 별명이 태양왕이다. 이 때문에 현대에서는 주로 독재 국가에서 독재자를 태양이라고 일컫는 경우가 있는데, 대표적인 예가 북한이며 김일성의 생일을 태양절로 칭하여 신격화한다.
또는 세상에 단 하나뿐이며 가장 소중한 존재라는 의미로 사랑을 일컫는 말로도 쓰인다. 예컨대 이탈리아 가곡 오 솔레 미오는 "오 나의 태양"이라는 뜻이다.
아르헨티나 인근 국가들의 국기, 정확히 말하자면 아르헨티나와 우루과이, 그리고 이후 나뉘어진 페루-볼리비아 연합의 국기를 보면 사람 얼굴이 있는 태양이 그려져 있는데, 이는 잉카 문명의 태양신 인티에게서 비롯된 문양이다. 명칭은 5월의 태양인데, 여기서 5월은 1810년에 스페인에게서 아르헨티나가 독립하는 단초가 된 아르헨티나 5월 혁명을 뜻한다.[65]
유니코드 문자상으로는 ☀로도 쓰인다.
이능력을 소재로 한 대중매체에서는 태양에 관련되면 신성하거나 매우 강력한 능력을 가진 것으로 등장한다. 또한 태양이 주인공에게 에너지를 공급해줘서 태양이 밝게 빛나면 끊임없이 에너지를 공급받아 강하지만 날씨가 흐려서 태양이 안 보이거나 하면 에너지를 공급받지 못해 약해지는 장면도 많이 나온다. 당장은 에너지가 부족해도 태양 가까이로 날아가기만 하면 다시 에너지를 공급받고 부상까지 회복되기도 한다.
문학에서는 보통 태양이 밝고 따뜻하기 때문에 긍정적으로 쓰이지만, 사막이나 백야가 있는 북반구 극지방 등을 배경으로 한 작품에서는 더위와 햇빛이 지나치게 오래쬐어 잠을 못들게 하는 등 부정적으로 묘사될 때도 있다.
대별왕과 소별왕이나 예, 에르히 메르겡처럼 태양이 여럿이었다가 쏘아없애 하나만 남았다는 설화도 있고, 망가스나 삼태성설화처럼 삼켜지는 설화도 있다.
10.1. 신화, 종교, 설화[편집]
자세한 내용은 태양신 문서를 참고하십시오.
10.2. 대중문화[편집]
10.2.1. 영화[편집]
10.2.2. 애니메이션/게임[편집]
- Fate 시리즈 - 히미코, 가웨인, 카르나, 오지만디아스, 타마모노마에
- Sdorica[66]
- 가면라이더 시리즈
- 귀멸의 칼날 - 츠기쿠니 요리이치, 카마도 탄지로, 카마도 탄쥬로, 스미요시를 비롯한 해의 호흡 사용자와 히노카미 카구라를 계승한 카마도 일가.
- 꿈장인과 잊지 못할 검은 요정 - 에밀리오
- 다크 소울 - 태양의 기사 솔라
- 닥터 슬럼프 - 햇님
- 더 킹 오브 파이터즈 시리즈 - 쿠사나기 쿄[67]
- 드래곤볼 - 구극장판에서 쿠우라나 브로리를 태워버리는 역할(?)로 종종 등장한다.
- 디지몬 어드벤처 - 신태일[68]
- 라푼젤 - 라푼젤
- 레젠다리움 - 오르말, 라우렐린, 아리엔, 아나르, 타르아나리온, 아나리온
- 리그 오브 레전드 - 레오나
- 마리오 시리즈 - 태양: 가뜩이나 그냥도 상당히 공포스러운 외형이지만 슈퍼 마리오 메이커 2에선 불쾌한 골짜기를 적극 활용하여 더욱 섬뜩한 디자인이 되었다.
- 슈퍼 마리오 선샤인 - 샤인[69]
- 마법사의 약속 - 오즈
- 마음의 소리 - 태양
- 메이즈 러너 실사영화 시리즈 - 태양 플레어
- 메이플스토리 - 소울마스터, 차원의 도서관 Episode 6. 샤레니안의 기사에 나온 태양,[70] 세렌
- 블랙 베히모스 - 링클레터 픽사이저[71]
- 삼성생명의 마스코트 비추미 - 해리
- 선샤인(영화)
- 슈퍼맨 - 초능력의 근원이 태양에너지다
- 아이카츠! 시리즈
- 아이돌 마스터 시리즈
- 아침 이슬 - 태양[73]
- 앙상블 스타즈! - 아케호시 스바루[74] 토모에 히요리
- 오버워치 - 일리아리
- 울트라 시리즈 - 플라즈마 스파크
- 유희왕 - 라의 익신룡
- 일곱 개의 대죄 - 에스카노르
- 죠죠의 기묘한 모험 - 선, 죠르노 죠바나[75]
- 초인의 시대 - 세인트 펄
- 캐릭캐릭 체인지 - 히나모리 아무, 히이라기 릿카, 애뮬릿 다이아, 퓨어 필링
- 텔레토비 - 아기 햇님
- 페르소나 시리즈
- 포켓몬스터 - 해루미, 에브이, 솔록, 불카모스, 솔가레오
- 프리큐어 시리즈
- 하트캐치 프리큐어! - 묘도인 이츠키(큐어 선샤인)
- 스타☆트윙클 프리큐어 - 아마미야 에레나(큐어 솔레이유)
- 프리티 시리즈
- 해를 품은 달 - 허염
- 희란국 연가 - 자현[76]
11. 언어별 명칭[편집]
12. 기타[편집]
- 미국의 조너스 소크가 소아마비 백신을 개발 한 후, 수많은 제약회사들의 제안에도 "공공의 이익을 위해 특허를 포기"를 하면서 한 말이 "태양에도 특허를 낼 건가요?"라는 말이었다.
||<table align=center>
||
에드워드 머로: (소아마비) 백신의 특허권자는 누구입니까?(Who owns the patent on this vaccine?)
소크 박사: 음, 사람들이겠죠. 특허는 없습니다. 태양에도 특허를 낼 건가요?(Well, the people, I would say. There is no patent. Could you patent the sun?)
- 태양의 법적 소유권을 주장한 사람이 나왔다. 이미 공증 절차도 마쳤다. 관련 기사. 이로 인해 조너스 소크의 말이 뒤틀려 버렸다라는 말이 있었지만 이미 달 문서의 데니스 호프의 사례에서 보듯, 이 개인의 천체에 대한 '법적 소유권'은 그냥 사기이다. 애초에 공증이고 자시고간에 지구 일개 국가의 법원은 천체까지 관할권이 없다. 어차피 미래에는 국가 간의 경쟁이 될 것이 뻔한데도 이렇게 소유권을 주장하는 이유는 가치도 없는 소유권을 팔아서 돈 벌려는 개수작 때문이다.
- 태양은 지구상에 존재하는 대부분의 상호작용의 궁극적인 원천이다. 지구 자체의 지각 활동을 제외하고, 지표면에서 일어나는 거의 모든 상호작용들은 대부분 태양 에너지에 근원을 두고 있다. 예를 들어 식물과 플랑크톤은 광합성으로 태양의 에너지를 체내에 축적시키며, 지구의 생태계는 이러한 식물과 플랑크톤이 광합성으로 채집한 태양 에너지에 의지해 살아간다.
물과 대기의 순환[80] 과 풍화와 같은 지구 대부분의 자연 현상 또한 궁극적으로는 태양의 힘으로 움직이는 것이라 할 수 있다. 인류 문명이 사용하는 에너지원 역시 원자력 발전과 지열 발전을 제외하면 태양 에너지에 그 궁극적인 유래를 두는데, 예컨데 화력 발전 또한 화석연료가 과거 태양 에너지를 통해 생장한 유기물들의 사체로 구성된 것이다. 수력 발전, 풍력 발전 역시 태양열을 통한 물과 대기의 순환이 없으면 사용할 수 없는 에너지원이다.
흔히 태양이 갑자기 사라지는 것을 상상할 때 지구상의 모든 생명체가 얼어 죽는 것을 끝으로 생각할 수 있으나, 이를 넘어 태양 에너지가 사라지게 된다는 것은 지구상의 생명체에게 에너지를 공급하는 존재가 사라지는 것으로, 궁극적으로는 지구의 모든 순환이 정지하게 되는 것을 의미한다. 태양 에너지가 사라질 시 지구 상에 남는 에너지원은 지진과 화산 활동 같은 지구 내부 활동과 달의 중력으로 인한 조석뿐이다.
흔히 태양이 갑자기 사라지는 것을 상상할 때 지구상의 모든 생명체가 얼어 죽는 것을 끝으로 생각할 수 있으나, 이를 넘어 태양 에너지가 사라지게 된다는 것은 지구상의 생명체에게 에너지를 공급하는 존재가 사라지는 것으로, 궁극적으로는 지구의 모든 순환이 정지하게 되는 것을 의미한다. 태양 에너지가 사라질 시 지구 상에 남는 에너지원은 지진과 화산 활동 같은 지구 내부 활동과 달의 중력으로 인한 조석뿐이다.
12.1. 돋보기 라이터[편집]
돋보기로 햇빛을 모으면 매우 강력한 태양 광선을 얻어낼 수 있다. 아마 초등학생 때 다들 한 번쯤은 해보았을 것이다. 일단 주위에 어두운 색깔의 합성 플라스틱이나 고무 등의 소재에 태양 광선을 조사하면 금세 연기가 나며 녹아내린다.
불이 아주 잘 붙는 솔방울은 불까지 나기에, 그야말로 화학 물질이 필요 없는 천연 라이터라고 할 수 있다.
단 검지 않은 물체를 태우기 위해서는 상당히 큰 크기의 돋보기를 준비해야 한다. 솔방울 같은 경우도 불이 잘 탄다고는 하지만 결정적으로 어두운 색이 아니기 때문에 꽤 오랜 시간 동안 광선을 쬐여줘야 불이 붙는다.
열에너지가 아닌 빛에너지를 모아 불을 붙이는 원리이므로, 차가운 얼음이라도 투명하게 렌즈로 깎아 만들면 햇빛을 모아 불을 붙일 수 있다.
13. 관련 문서[편집]
[1] 역기점 J2000 기준 거리.[2] 1,989,100,000,000,000,000,000,000,000t이다.[3] 태양은 플라즈마 상태이기 때문에 위도에 따라 자전 주기가 24일에서 36일까지 다르게 나타난다. 저위도일수록 자전 주기가 짧다.[4] 현 시점의 태양은 헬륨보다 무거운 원소들을 만들어낼 수 없기 때문에 수소와 헬륨을 제외한 모든 원소들은 전부 오래전 죽은 별의 시체에서 기원한 물질들이다. 물론 태양의 수소와 헬륨도 일부는 이러한 별의 시체에서 기원한 것들이 많다.[5] #[6] 태양이 작은 별이라는 인식은 밤하늘에 보이는 다른 별들과 비교한 것으로, 수백 광년 밖에서 지구의 밤하늘로 빛을 도달케 할 정도의 별 가운데서는 태양보다 작은 별이 거의 없기 때문이다. 실제 우주에는 태양보다 작은 별(적색왜성, 갈색왜성 등)이 훨씬 더 많지만 크기가 작을수록 어둡기 때문에 이들은 인간이 관측하기 어렵다.[사진] [7] 왼쪽 사진의 플레어의 크기는 지구보다 크다.[8] 384.6요타와트 또는 초당 9.192 × 1010메가톤 TNT[9] 순간적으로 충돌하면서 중력파로 방출되는 에너지는 질량의 10 ~ 20%에 달한다.[10] 질량의 최대 10 ~ 50%가 에너지로 전환된다.[11] 잘 보면 12분 24초에 금성이 지나가는 것을 확인할 수 있다. 또한 간간히 일식도 보인다.[12] 흰색 빛에다가 아주아주 얇은 청록색 필터를 씌운 느낌이라고 보면 쉽다.[13] 이를 두고 태양은 G형의 황색 별이라고 교과서에서 배웠으니 흰색 별이라는 것은 잘못 되었다고 말하는 사람들이 있는데 반은 맞고 반은 틀린 말이다. 태양은 분광형상 황색왜성에 속하는 별이 맞지만 이것은 태양이 방출한 빛이 황색이라는거지 지구에서 보이는 태양이 황색이라는 것은 아니다.[14] G형 항성을 우주에서 관측 시 흰색을 띄게 된다.[15] 다양한 염료를 사용하는 미술 작품에서는 태양 혹은 태양신을 묘사할 때 붉은 색을 쓰는 경우를 어렵지 않게 볼 수 있다.[16] 쿠르츠게작트의 영상.[온도변화] [17] 각각 637.4nm와 530.3nm의 파장을 갖는다. 전자는 형성에 1,300,000K, 후자는 2,300,000K의 온도가 필요하다. 플레어가 일어날 때는 더 높은 온도가 필요한 Ca+14(3,600,000K의 온도가 필요)의 분광선도 나타난다.[18] 이 질량을 기준으로 한 단위도 있는데 태양질량(기호 M⊙)이라고 한다.[19] 이 중에서도 목성이 0.1%p, 토성이 0.03%p 정도를 차지한다. 나머지 6개 행성과 위성들, 소행성들이 차지하는 비율은 전체에서 0.01%가 채 되지 않는다.[20] 0등급 정도.이는 지구에서 본 아크투루스와 비슷한 수준.[21] 태양빛에 필적하거나 이를 넘어설 정도로 밝은 빛을 내는 전등 등이 존재하기는 하지만 이는 대개 특정 실험이나 조사 등 매우 특수한 상황에 사용되는 것들이고 매우 고가이다. 그나마 우리 주변에서 태양빛에 필적하는 광원을 찾자면 바로 스포츠 스타디움 대형 전등으로, 이 대형 전등 바로 앞에서 밝기를 측정하면 햇빛과 비등한 수치가 나오는 것이 알려져 있다. 하지만 태양은 지구 표면적의 절반 가까이를 밝게 비추는데 비해, 이런 장비들이 태양 수준으로 비출수 있는 면적은 태양에 비하면 점의 넓이 정도 밖에 되지 않는다.[22] 우주복 헬멧은 앞부분에 금박을 입혀 태양빛의 반사를 극대화하도록 만든다. 만약 그냥 투명하다면 태양을 쳐다보는 순간 눈이 멀고 만다.[23] 부분 일식으로 99%가 가려진 상태에서도 직시할 경우 영구적인 시력 손상을 줄 수 있다.[24] 태양 관측용으로 사용되는 필터의 차광율은 보통 99.999% 정도 된다.[25] 직접 눈으로 피사체를 보는 것이 아닌 따로 설치된 디지털 LCD 화면[26] 밝기 순서대로 시리우스, 알타이르, 프로키온, Delta Pavonis, Beta Hydri, 센타우루스자리 알파, 아키르드(Eta Cassiopeiae)[27] 현 예상대로라면, 지구는 태양이 점근거성가지가 되었을 때 태양에게 흡수당하고 이후 태양은 행성상성운을 남기고 폭파하게 된다. 지구가 먼저 끝나는 셈.[28] 이렇게 설명하면 물리에 대해 조금이라도 공부한 학생들은 W/m2 같은 단위를 떠올릴 수도 있을 텐데, 둘은 아예 다른 단위이며 lux는 인간이 느끼는 밝기를 기준으로 하였기 때문에 같은 에너지를 내뿜는다고 해서 똑같이 밝게 보인다고 장담할 수 없는 것과 같은 이치이다.[29] 출처[30] 물론 같은 거실이더라도 조명 바로 아래에 있을 때와, 멀리 쇼파에 앉아 있을 때 밝기 차이가 발생할 것이고 또한 너무 오래된 전구를 사용하는 가정이라면 밝기가 더 줄어들 것이다. 저 300 lux라는 수치는 어디까지나 평균적인 수치이고, 대충 거실 밝기가 저 정도라는 수준으로 유의만 하면 충분할 것이다.[31] 태양빛이 완전 수직으로 내리쬘 때. 이 값은 태양상수로도 불린다. 참고로 우주로 나가면 태양빛은 더욱 더 밝아진다. 태양상수는 가장 낮은 단계의 대기 영향을 기준으로 산정되었다. 자세한 것은 영문 위키 등에서 Air mass 등을 찾아봐도 좋다.[32] 중위도 지역 기준, 대기의 영향이 더욱 커지는 것 등의 요소를 종합적으로 고려[33] 직사광선을 직접적으로 쬐지 않는 곳. 다시 말해 그림자도 포함이다.[34] 그림자만 해도 위의 거실 밝기와 비교하면 터무니없이 밝다는 것을 알 수 있다. 그림자가 어둡게 보이는 것은 어디까지나 직사광선을 쬐는 곳과 대비되기 때문.[35] 비가 오거나 그에 준하는 수준의 흐림[36] 사무실, 부엌, 연구실, 도서관 등[37] 출처[38] 단 공중화장실 등에서 흔한 칸막이 변기 안쪽은 변기 바로 위에 조명이 있는 경우가 아닌 이상 10~20 정도밖에 안된다.[39] 해왕성과 같이 먼 행성에서는 태양이 그저 무척 밝은 별로 보일 뿐이라는 생각을 가진 사람들이 많은데, 실제로 해왕성에서조차 햇빛이 표면을 어느정도 밝게 비춰줌을 알 수 있다.[40] 달에서 바라본 꽉 찬 지구. 지구에서 삭일때 달에선 보름지구가 된다.[41] 지구는 달보다 표면적이 대략 14배 더 크고, 햇빛 반사율은 약 3배 더 높기 때문에 보름달보다 무려 40배나 밝다. 이는 대략 지구의 항해박명 수준의 밝기이다.[42] 어두운 분위기의 술집의 밝기가 대략 10lux 내외를 왔다갔다한다.[43] 각각 박명의 시작과 끝을 의미하는, 밤의 경계를 정의하는 군용 시각이다.[44] 가로등과 각종 조명에 둘러싸여 살아가는 현대인은 잘 모르겠지만, 달빛은 그림자를 만들 수 있을 정도로 밝다.[45] 달이 뜨지 않은 밤에 홀로 서 있으면 눈을 감고 있는 것과 차이가 없을 정도로 정말 아무것도 보이지 않는데, 달이 떠 있는 날 밤은 사물의 식별은 물론이고 책을 겨우 읽을 수 있을 정도로 밝다.[46] 또한 태양과 원일점에서의 세드나 거리는 무려 883.1AU 인데 비해, 태양과 해왕성의 거리는 고작 30.1AU 이다. 따라서 세느나는 해왕성 보다 최대 29배나 멀리 떨어져 있다. 즉 세드나 원일점에서의 직사광선과 보름달의 직사광선의 광도가 같다는 것은, 해왕성에서 비추는 태양은 지구에서 비추는 보름달보다 292배, 즉 861배나 밝다는 것을 알 수 있다.[47] 달이 뜨지 않는 날[48] 완전히 0이 아닌 이유는, 대기 자체가 극히 희미한 빛을 방출하기 때문이다. 물론 어차피 아무것도 안보이기 때문에 의미 있는 수치는 아니다.[49] 가장 밝을 때는 0.00014 lux. 이는 밤하늘의 모든 별빛을 합친 것과 맞먹는 수치다.[50] 좀 더 정확히는 2.08 microlux[51] 서울에서 부산까지 2초면 가는 속도다.[52] 근데 교과서는 이 내용을 아직도 쓰고 있는 경우가 많다...[53] 성운이 압축되는 원인으로는 여러 가지가 있을 수 있으며, 대표적으로 은하 간의 병합, 초신성, 은하 나선팔에 의한 밀도파 등이 제시된다.[54] 첫 생명체는 37~38억 년 전쯤에 등장했으니 현 시대는 생명체가 번성하는 시대의 후기라 볼 수 있다.[55] 만약 그때까지 인류 문명이 유지되고 있다면 인류는 이미 지구를 탈출하여 새 보금자리 행성을 찾은 이후일 것이다.[56] 즉 바다가 없어진다.[57] 분광형은 G1IV-V 정도이다.[58] 그때의 분광형은 대략 M5III. 보통 태양 질량의 13~28배에 태양과 비슷한 중원소를 가지고 있다면, 지름이 태양의 1,000~2,000배에 이르고 초신성 폭발 후 중성자별이 된다. 태양은 질량이 부족하기 때문에 이 정도만 커진다.[59] 분광형 K0III.[60] 분광형 M6III.[61] 태양보다 훨씬 이후에 태어난 별 중에도 중원소가 태양보다 더 적은 별들이 있다. 가령 베가는 4~6억 년 전에 태어났지만 중원소가 태양보다 훨씬 적은 2세대 별로 분류된다.[62] 약 138억 년 전[63] 사족으로 1세대 항성, 즉 최초의 항성을 퍼스트 스타라고 한다. 이 퍼스트 스타는 매우 거대했을 것으로 예상되는데, 이때는 우주에 수소와 헬륨밖에 없었으므로 핵융합에 필요한 온도까지 별을 가열하려면 매우 큰 질량이 필요했을 것이기 때문이다.[64] 태양신 중에서는 드물게 여신이다.[65] 남반구의 5월은 대단히 추운 시기이다. 북반구의 11월과 같다.[66] 각 메인 스토리 부제는 태양과 관련된 기상현상이며(1기 - 해돋이, 2기 - 신기루, 3기 - 일식, 4기 - 극광), 용신교파에 등장하는 직급인 진일, 환일 모두 태양 기상 현상의 용어에서 따 왔다.[67] 교복 등에 태양 마크가 있고 2003 XI도 있다.[68] 이 캐릭터의 문장인 용기의 문장이 태양 모양이다.[69] 클리어 목표이다.[70] 지지 않는 태양이 내는 햇무리가 기사단을 더욱 미치게 만드는 것으로 부정적으로 묘사되었다. BGM명은 대놓고 'White Night'다.[71] 태양과 달의 힘을 가진 별의 마녀[72] 호시미야 이치고의 소속팀[73] 더위 관련으로 부정적으로 묘사되었다. 1975년 금지곡이 되었는데, '태양이 묘지 위에 붉게 떠오른다'는 가사가 불순하다는 이유이다. 해석에 따라 '묘지는 당시 민주 항쟁으로 죽어간 이들을 뜻하고 그 위에 떠오르는 태양은 일출의 이미지, 즉 새로운 아침, 새 시대, 새 희망을 뜻한다'거나, 보다 과격하게는 '위대한 인민 지도자(태양)가 혁명파 인민들의 시체(묘지)들을 넘고 공산주의 락원(붉게)을 세운다(떠오른다)'고 굳이 억지스럽게 말을 엮을 수는 있는데, 이도 애매한 해석인 것이 묘지는 부정적인 시어이고, 태양이 떠올라서 한낮이 되었을 때 시련이 찾아오므로 이 가사에서는 태양 역시 부정적인 시어이다. 따라서 '붉은 태양이 김일성의 공산주의 혁명을 의미한다'는 주장은 아전인수식 해석이다.[74] 이름이나 그룹은 별에 가까운 의미를 가지지만 캐릭터의 성격이나 외모가 태양 같다라는 평이 많고 모리사와 치아키는 대놓고 아케호시 나의 태양 이라고 불렀던 전적이 있다. 별로도 비유가 많이 되지만 태양의 특성까지 가진 셈.[75] 죠르노는 이탈리아어로 태양이란 뜻이다. 정작 아버지인 DIO는 태양에 치명적인 흡혈귀이다. 사실 디오도 아버지 다리오 브란도랑 사이가 좋지 않았다는 점을 생각해보면 아이러니하다.[76] 작중 태양에 비유하는 언급이 자주 나온다.[77] '햇님'은 틀린 표기이다. 사이시옷이 첨가되지 않는다. 국립국어원 답변. 하지만 국립국어원의 주장과는 다르게 /핸님/이라고 발음하는 사람이 압도적이다.[78] 여성형 정관사. 고대 영어에서 태양은 여성형 명사이다. 현대 영어로는 The Sun이라고 한다.[79] 쿠르츠게작트의 영상.[80] 비, 바람, 해류 등.
이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
이 문서의 내용 중 전체 또는 일부는 2024-06-13 02:47:56에 나무위키 태양 문서에서 가져왔습니다.