칼륨

최근 편집일시 :


주기율표
[ 펼치기 · 접기 ]
족→
주기↓
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1
[[수소|{{{#d00,#fc3 H
{{{-5

수소
]]
[[헬륨|{{{#d00,#fc3 He
{{{-5

헬륨
]]
2
[[리튬|{{{#000,#fff Li
{{{-5

리튬
]]
[[베릴륨|{{{#000,#fff Be
{{{-5

베릴륨
]]
[[붕소|{{{#000,#fff B
{{{-5

붕소
]]
[[탄소|{{{#000,#fff C
{{{-5

탄소
]]
[[질소|{{{#d00,#fc3 N
{{{-5

질소
]]
[[산소|{{{#d00,#fc3 O
{{{-5

산소
]]
[[플루오린|{{{#d00,#fc3 F
{{{-5

플루오린
]]
[[네온|{{{#d00,#fc3 Ne
{{{-5

네온
]]
3
[[나트륨|{{{#000,#fff Na
{{{-5

나트륨
]]
[[마그네슘|{{{#000,#fff Mg
{{{-5

마그네슘
]]
[[알루미늄|{{{#000,#fff Al
{{{-5

알루미늄
]]
[[규소|{{{#000,#fff Si
{{{-5

규소
]]
[[인(원소)|{{{#000,#fff P
{{{-5

]]
[[황(원소)|{{{#000,#fff S
{{{-5

]]
[[염소(원소)|{{{#d00,#fc3 Cl
{{{-5

염소
]]
[[아르곤|{{{#d00,#fc3 Ar
{{{-5

아르곤
]]
4
[[칼륨|{{{#000,#fff K
{{{-5

칼륨
]]
[[칼슘|{{{#000,#fff Ca
{{{-5

칼슘
]]
[[스칸듐|{{{#000,#fff Sc
{{{-5

스칸듐
]]
[[티타늄|{{{#000,#fff Ti
{{{-5

티타늄
]]
[[바나듐|{{{#000,#fff V
{{{-5

바나듐
]]
[[크로뮴|{{{#000,#fff Cr
{{{-5

크로뮴
]]
[[망가니즈|{{{#000,#fff Mn
{{{-5

망가니즈
]]
[[철(원소)|{{{#000,#fff Fe
{{{-5

]]
[[코발트|{{{#000,#fff Co
{{{-5

코발트
]]
[[니켈|{{{#000,#fff Ni
{{{-5

니켈
]]
[[구리|{{{#000,#fff Cu
{{{-5

구리
]]
[[아연|{{{#000,#fff Zn
{{{-5

아연
]]
[[갈륨|{{{#000,#fff Ga
{{{-5

갈륨
]]
[[저마늄|{{{#000,#fff Ge
{{{-5

저마늄
]]
[[비소|{{{#000,#fff As
{{{-5

비소
]]
[[셀레늄|{{{#000,#fff Se
{{{-5

셀레늄
]]
[[브로민|{{{#00f,#3cf Br
{{{-5

브로민
]]
[[크립톤|{{{#d00,#fc3 Kr
{{{-5

크립톤
]]
5
[[루비듐|{{{#000,#fff Rb
{{{-5

루비듐
]]
[[스트론튬|{{{#000,#fff Sr
{{{-5

스트론튬
]]
[[이트륨|{{{#000,#fff Y
{{{-5

이트륨
]]
[[지르코늄|{{{#000,#fff Zr
{{{-5

지르코늄
]]
[[나이오븀|{{{#000,#fff Nb
{{{-5

나이오븀
]]
[[몰리브데넘|{{{#000,#fff Mo
{{{-5

몰리브데넘
]]
[[테크네튬|{{{#000,#fff Tc
{{{-5 __

테크네튬
__]]
[[루테늄|{{{#000,#fff Ru
{{{-5

루테늄
]]
[[로듐|{{{#000,#fff Rh
{{{-5

로듐
]]
[[팔라듐|{{{#000,#fff Pd
{{{-5

팔라듐
]]
[[은|{{{#000,#fff Ag
{{{-5

]]
[[카드뮴|{{{#000,#fff Cd
{{{-5

카드뮴
]]
[[인듐|{{{#000,#fff In
{{{-5

인듐
]]
[[주석(원소)|{{{#000,#fff Sn
{{{-5

주석
]]
[[안티모니|{{{#000,#fff Sb
{{{-5

안티모니
]]
[[텔루륨|{{{#000,#fff Te
{{{-5

텔루륨
]]
[[아이오딘|{{{#000,#fff I
{{{-5

아이오딘
]]
[[제논(원소)|{{{#d00,#fc3 Xe
{{{-5

제논
]]
6
[[세슘|{{{#000,#fff Cs
{{{-5

세슘
]]
[[바륨|{{{#000,#fff Ba
{{{-5

바륨
]]
(란)
[[하프늄|{{{#000,#fff Hf
{{{-5

하프늄
]]
[[탄탈럼|{{{#000,#fff Ta
{{{-5

탄탈럼
]]
[[텅스텐|{{{#000,#fff W
{{{-5

텅스텐
]]
[[레늄|{{{#000,#fff Re
{{{-5

레늄
]]
[[오스뮴|{{{#000,#fff Os
{{{-5

오스뮴
]]
[[이리듐|{{{#000,#fff Ir
{{{-5

이리듐
]]
[[백금|{{{#000,#fff Pt
{{{-5

백금
]]
[[금|{{{#000,#fff Au
{{{-5

]]
[[수은|{{{#00f,#3cf Hg
{{{-5

수은
]]
[[탈륨|{{{#000,#fff Tl
{{{-5

탈륨
]]
[[납|{{{#000,#fff Pb
{{{-5

]]
[[비스무트|{{{#000,#fff Bi
{{{-5

비스무트
]]
[[폴로늄|{{{#000,#fff Po
{{{-5

폴로늄
]]
[[아스타틴|{{{#000,#fff At
{{{-5 __

아스타틴
__]]
[[라돈|{{{#d00,#fc3 Rn
{{{-5

라돈
]]
7
[[프랑슘 |{{{#000,#fff Fr
{{{-5 __

프랑슘
__]]
[[라듐 |{{{#000,#fff Ra
{{{-5

라듐
]]
(악)
[[러더포듐 |{{{#000,#fff Rf
{{{-5 __

러더포듐
__]]
[[더브늄 |{{{#000,#fff Db
{{{-5 __

더브늄
__]]
[[시보귬 |{{{#000,#fff Sg
{{{-5 __

시보귬
__]]
[[보륨 |{{{#000,#fff Bh
{{{-5 __

보륨
__]]
[[하슘 |{{{#000,#fff Hs
{{{-5 __

하슘
__]]
[[마이트너륨 |{{{#000,#fff Mt
{{{-5 __

마이트너륨
__]]
[[다름슈타튬 |{{{#000,#fff Ds
{{{-5 __

다름슈타튬
__]]
[[뢴트게늄 |{{{#000,#fff Rg
{{{-5 __

뢴트게늄
__]]
[[코페르니슘 |{{{#00f,#3cf Cn
{{{-5 __

코페르니슘
__]]
[[니호늄 |{{{#000,#fff Nh
{{{-5 __

니호늄
__]]
[[플레로븀 |{{{#00f,#3cf Fl
{{{-5 __

플레로븀
__]]
[[모스코븀 |{{{#000,#fff Mc
{{{-5 __

모스코븀
__]]
[[리버모륨 |{{{#000,#fff Lv
{{{-5 __

리버모륨
__]]
[[테네신 |{{{#000,#fff Ts
{{{-5 __

테네신
__]]
[[오가네손 |{{{#000,#fff Og
{{{-5 __

오가네손
__]]
(란)
[[란타넘|{{{#000,#fff La
{{{-5

란타넘
]]
[[세륨|{{{#000,#fff Ce
{{{-5

세륨
]]
[[프라세오디뮴|{{{#000,#fff Pr
{{{-5

프라세오디뮴
]]
[[네오디뮴|{{{#000,#fff Nd
{{{-5

네오디뮴
]]
[[프로메튬|{{{#000,#fff Pm
{{{-5 __

프로메튬
__]]
[[사마륨|{{{#000,#fff Sm
{{{-5

사마륨
]]
[[유로퓸|{{{#000,#fff Eu
{{{-5

유로퓸
]]
[[가돌리늄|{{{#000,#fff Gd
{{{-5

가돌리늄
]]
[[터븀|{{{#000,#fff Tb
{{{-5

터븀
]]
[[디스프로슘|{{{#000,#fff Dy
{{{-5

디스프로슘
]]
[[홀뮴|{{{#000,#fff Ho
{{{-5

홀뮴
]]
[[어븀|{{{#000,#fff Er
{{{-5

어븀
]]
[[툴륨|{{{#000,#fff Tm
{{{-5

툴륨
]]
[[이터븀|{{{#000,#fff Yb
{{{-5

이터븀
]]
[[루테튬|{{{#000,#fff Lu
{{{-5

루테튬
]]
(악)
[[악티늄|{{{#000,#fff Ac
{{{-5

악티늄
]]
[[토륨|{{{#000,#fff Th
{{{-5

토륨
]]
[[프로트악티늄|{{{#000,#fff Pa
{{{-5

프로트악티늄
]]
[[우라늄|{{{#000,#fff U
{{{-5

우라늄
]]
[[넵투늄|{{{#000,#fff Np
{{{-5 __

넵투늄
__]]
[[플루토늄|{{{#000,#fff Pu
{{{-5 __

플루토늄
__]]
[[아메리슘|{{{#000,#fff Am
{{{-5 __

아메리슘
__]]
[[퀴륨|{{{#000,#fff Cm
{{{-5 __

퀴륨
__]]
[[버클륨|{{{#000,#fff Bk
{{{-5 __

버클륨
__]]
[[캘리포늄|{{{#000,#fff Cf
{{{-5 __

캘리포늄
__]]
[[아인슈타이늄|{{{#000,#fff Es
{{{-5 __

아인슈타이늄
__]]
[[페르뮴|{{{#000,#fff Fm
{{{-5 __

페르뮴
__]]
[[멘델레븀|{{{#000,#fff Md
{{{-5 __

멘델레븀
__]]
[[노벨륨|{{{#000,#fff No
{{{-5 __

노벨륨
__]]
[[로렌슘|{{{#000,#fff Lr
{{{-5 __

로렌슘
__]]
범례

배경색: 원소 분류
알칼리 금속
]]
[[알칼리 토금속 |{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[란타넘족|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[악티늄족|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[전이 원소 |{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[전이후 금속 |{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[준금속|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[비금속|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[비금속|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[비활성 기체 |{{{#000,#fff

밑줄: 자연계에 없는 인공 원소 혹은 극미량으로만 존재하는 원소로, 정확한 원자량을 측정하기 어려움.
글자색: 표준 상태(298 K(25 °C), 1기압)에서의 원소 상태, ● 고체 · ● 액체 · ● 기체





19K*
포타슘 / 칼륨 >

 | 
Potassium / Kalium

분류
알칼리 금속
상태
고체
원자량
39.0983
밀도
0.862 g/㎤
녹는점
63.5 °C
끓는점
759 °C
용융열
2.33 kJ/mol
증발열
76.9 kJ/mol
원자가
1
이온화에너지
418.8
전기음성도
0.82
전자친화도
48.4 kJ/mol
발견
H. Davy (1807)
CAS 등록번호
7440-09-7
이전 원소
아르곤(Ar)
다음 원소
칼슘(Ca)
* 과거 연금술이 활발하던 시절 탄산나트륨과 탄산칼륨을 뭉뚱그려 부르던 아랍어 '알낄리'(الْقِلْي; al-qily)에서 qily → Kali로 따온 것에서 유래.



파일:external/upload.wikimedia.org/Potassium.jpg
라틴어
Kalium
영어
Potassium
중국어

일본어
カリウム[1][2]
에스페란토
Kalio

파일:attachment/K-usage.jpg

1. 개요
2. 명칭
3. 특성
4. 동위원소
5. 여담
6. 관련 문서


1. 개요[편집]


4주기 1족 알칼리 금속이며, 원소 기호는 K이다. 불꽃 산화 반응 스펙트럼 색은 보라색이다.

라틴어, 독일어: Kalium
영어: Potassium


2. 명칭[편집]


나트륨과 함께 대학교 들어가면 이름이 바뀌는 원소. 현재 고2~3이 쓰는 화학 교과서는 칼륨/포타슘이 혼용되었던 2009년에 개정된 거라 칼륨으로 적혀있는 경우가 많지만,[3] 보통 대학에 들어가면 가장 먼저 공부하게 되는 일반화학 교과서엔 칼륨 대신 대부분 영문명 기준을 따라 포타슘으로 적혀있다. 또한 교수들의 상당수가 미국 대학 출신이기 때문에 포타슘이라고 부른다. 다만 노년기에 접어든 교수들중 독일 쪽에서 유학한 사람들은 칼륨으로 부르는 경우도 있다. 이에 대해 대한 화학회는 2008년 개정에서는 독일어인 칼륨을 공식 명칭으로 하고 포타슘도 혼용 가능하다고 하였으나 2014년에 '포타슘' 단독 표기로 변경했다. 화학 분야로 한정하면 칼륨이라고 하면 잘못된 표기가 된다. (Na도 소듐 단독 표기로 변경함.) 다만, 화학을 벗어나 물리학[4], 약학, 생물학, 식품학, 농업[5] 등으로 넘어가면 칼륨이 여전히 맞는 표기이고 널리 쓰인다.

표준국어대사전에는 칼륨, 칼리, 포타슘, 가리(加里)가 제시되어 있으며 모두 표준어이다. 다만 기준은 칼륨이며 칼리, 포타슘은 칼륨과 동의어라고만 되어 있고[6] 가리는 칼리의 음역어로서 제시하고 있다. 영영사전이나 영한사전에도 Kalium으로 등재돼 있기는 하다. 아무래도 영어사전인지라 찾아보면 영어식 명칭인 Potassium을 보라고 안내돼 있다.

potassium의 미국식 영어 발음은 '퍼태시엄 [pəˈtæsiəm]'에 가깝다.

칼륨을 처음 단리한 사람은 영국인 험프리 데이비 경(Sir Humphry Davy, 1778-1829)으로, 1807년에 자신이 개발한 전기분해법을 써서 식물의 타고 남은 재를 정제한 탄산 칼륨염([math(\rm K_2CO_3)]) 혼합물에서 칼륨을 분리하였다. 이 혼합물을 가리켜 영어로 포타시(potash[7])라고 하기 때문에, 험프리 데이비는 자국어인 영어에 기반하여 새로운 원소의 이름을 포타슘(potassium)이라고 명명하였다. 사실 험프리의 칼륨 단리(1807) 이전부터 독일에서도 potash(와 soda; [math(\rm Na_2CO_3)])에 관한 연구 성과[8]는 나오고 있던 상황이었고 독일에서도 potash를 독일어로 직역한 Pottasche(Pott+Asche)가 화학자들 사이에서 쓰이고 있었는데, 언어 순혈주의 성향이 짙은 독일어답게[9] 험프리가 sodium과 potassium으로 명명하기 전부터도 독일에서는 여전히 여러 학자들이 새 명칭을 중구난방으로 내놓고 있는 상황이었다. 당시 쓰였던 potash의 독일어식 명칭은 '식물성 알칼리'(Pflanzenalkali), '식물의 알칼리염'(vegetabilisches Laugensalz), 'Pottasche' 등이었는데 이 개판오분전인 상황과 'Pottasche는 어원을 고려했을 때 학술 용어로서 부적절하다'며 불만을 품고 있던 클라프로트(Martin Heinrich Klaproth; 1743~1817)가 1797년에 저 명칭들 대신에 '칼리'(Kali)라고 쓸 것을 제안한 게 '칼륨' 명칭의 시초이다.

Das in der neuen chemischen Nomenclatur zum generischen Namen erhobene Wort Pottasche kann bei uns Deutschen auf keinen allgemeinen Beifall Anspruch machen; da es nur einen schlechten etymologischen Werth hat, und bloss daher entstanden ist, dass man ehemals zum Ausglühen der eingedickten Holzaschenlaugen sich eiserner Töpfe (niedersächsisch Pott) statt der jetzigen Kalziniröfen bedient hat.

Mein Vorschlag gehet dahin: statt der bisherigen Benennungen, Pflanzenalkali, vegetabilisches Laugensalz, Pottasche u. s. w. den Namen Kali festzusetzen; und statt der Benennungen Mineralalkali; Soda u. s. w. zu dessen ältern Namen Natron zurück zu kehren.

새 화학 명명법에서 'potash'[10]

라는 원소명은 우리 독일인들에게 전반적으로 환영받지 못한다. 왜냐하면 영 좋지 않은 어원학적 가치와 오늘날 쓰이는 소성로가 아닌 옛날에 농축된 나무의 잿물을 식힐 때 쓰던 '철제 항아리'(서부 저지 독일어로 Pott)라는 기원밖에 없기 때문이다.

나의 제안은 다음과 같다. 종래의 명칭인 '식물성 알칼리', '식물의 알칼리염', 'potash', 기타 등등 대신에 'Kali'로 통일(확정)하고, '무기물 알칼리', 'soda' 등 대신에 오래 전에 쓰던 명칭[11]

Natron으로 회귀하는 것이다.

[1] 앞 부분 'カリ'만 따서 '가리'라고도 불렀는데(예:청산가리), 노인들 중 일부는 이 '가리'에 익숙해서 '가리'라고 하지 않고 '칼륨'이라고 하면 못 알아들을 수도 있다. 그리고 농촌에서 비료성분을 읽을 때 '가리'라는 단어를 더 많이 쓴다.[2] 표준국어대사전에선 칼리의 음역어로서 加里를 제시하고 있다.[3] 단, 물리에서는 2009 개정 교육과정에서 나트륨이 소듐으로 용어가 변경되었다.[4] 이쪽도 분야에 따라서는 포타슘을 주로 쓰는 곳도 있다. ex) 초전도체 연구[5] 비료. 이쪽은 아예 일본식 약칭을 따른 "가리"라고 부르기도 한다.[6] 다시 말하지만 비표준어라는 뜻은 아니다.[7] pot + ash 정제과정에 냄비(pot)를 이용했는데 냄비밑에 쌓인 재(ash)여서 potash라고 불렀다.[8] 대표적으로 마그라프(Andreas Sigismund Marggraf; 1709~1782)가 1758년에 발표한 업적이 있는데, 마그라프의 해당 논문 이전에는 사람들이 soda([math(\rm Na_2CO_3)])와 potash([math(\rm K_2CO_3)])가 같은 물질이라고 알고 있었으며, 유럽에서는 '나트론'(natron), 아랍권에서는 '알낄리'(الْقِلْي; al-qily)라고 불렸다. 마그라프는 불꽃 반응을 통해 두 물질이 다르다는 것을 처음으로 발견했다.[9] 독일어는 Fernsehen(fern=먼, sehen=보다), Klimaanlage(Klima=기후, Anlage=시설), Zugmaschine(Zug=끄는 것, maschine=기계)의 예에서 알 수 있듯이 웬만한 외국어는 전부 자국어로 순화해서 수입하는 언어로 유명하다.[10] 독일어로는 Pottasche[11] 즉, 과거 유럽 연금술사들이 potash와 soda를 아울러 부르던
'칼리'는 soda와 potash를 아랍에서 뭉뚱그려 부르던 '알낄리'(الْقِلْي; al-qily)에서 유래[12]했고, 클라프로트는 '칼리'의 제안과 더불어 soda를 '나트론'(Natron)이라 부르자고도 제안했다. 이후 10년 뒤 험프리가 potassium의 단리를 발표하고 나서 길버트(Ludwig Wilhelm Gilbert; 1769~1824)가 해당 논문을 독일어로 번역할 때, 역주에서 potassium의 독일어 명칭으로서 Kali를 라틴어화한 Kalium을 제안하기도 했다.

In unserer deutschen Nomenclatur würde ich die Namen Kalium und Natronium vorschlagen, wenn man nicht lieber bei den von Herrn Erman gebrauchten und von mehreren angenommenen Benennungen Kali-Metalloid and Natron-Metalloid, bis zur völligen Aufklärung der chemischen Natur dieser räthzelhaften Körper bleiben will. Oder vielleicht findet man es noch zweckmässiger fürs Erste zwei Klassen zu machen, Metalle und Metalloide, und in die letztere Kalium und Natronium zu setzen. — Gilbert.

이 수수께끼 물질의 화학적 특성이 완전히 밝혀지기 전까지는, 에어만 씨[13]

가 쓰기 시작하고 몇몇이 받아들이고는 있는 '칼리-준금속'(Kali-metalloid)과 '나트론-준금속'(Natron-Metalloid) 같은 명칭이 탐탁치 않은 분들에게 우리의 독일어식 명명법[14]으로서 '칼륨'과 '나트로늄'(Natronium)을 제안하는 바이다. 혹 어쩌면 일단 금속과 준금속 두 분류를 만들어서 후자에 '칼륨'과 '나트로늄'을 배치하는 게 더 유용할 수도 있다. - 길버트.

[12] 아랍어에서 '알-'(الْ; al-)은 정관사이므로 실제 의미는 뒤의 '낄리'(قِلْي)에 있다. 알칼리의 어원이기도 하다.[13] Paul Erman, 1764~1851. 독일의 물리학자.[14] 원문 In unserer deutschen Nomenclatur(영어로 치면 In our german nomenclature)에서 알 수 있듯이 해당 명칭이 독일어 내에서 통용되는 것을 전제로한 제안임을 알 수 있고, 무슨 독일이 패권을 부려서 전세계를 상대로 원소 이름 교정을 강제할 목적으로 이름을 지은 게 아니라는 것을 알 수 있다.
문제는 이때까지도 원소를 로마자 알파벳 기호로 나타내는 체계가 없었다는 점이다. 1814년 스웨덴의 왼스 베셸리우스(Jöns Jacob Berzelius, 1779~1848)가 원소 기호 체계를 발표하면서 최종적으로 [math(\rm K)]라는 기호와 '칼륨'이라는 명칭으로 확정짓게 된다.[15] 즉 '칼륨'이라는 명칭을 붙인 사람은 세간의 인식과는 달리 스웨덴인이다. 독일어권 내에서만 쓰려고 했던 용어가 베셸리우스의 업적으로 인해 전세계로 퍼진 셈이다.

국가별로 구분해 보면 재미있는데(링크의 좌단), 유럽권에서는 라틴어의 직계 후손이라 할 수 있는 로망스어군 언어를 쓰는 나라들이 라틴어식 명칭이 아니라 영어식 명칭과 비슷하게 쓰고 있다.[16] 그리고 영국을 제외한 게르만어파 국가들은 독일에서부터 아이슬란드[17]까지 죄다 라틴어식 명칭인 칼륨, 나트륨이다. 슬라브권도 대부분 나트리, 칼리라고 쓴다. 그야말로 주객전도가 아닐 수 없는 셈.

미국 학제의 영향을 크게 받은 의대나 공대, 자과대 등 대부분의 자연계 학과에서는 대부분 소듐, 포타슘이라고 부른다.[18] 그러나 과학 분야가 아닌 일상에서 칼륨을 갑자기 생판 다른 이름인 포타슘으로 바꾸면 혼란이 크므로 국립국어원 기준 표준어는 칼륨으로 되어 있다.[19]

그러나 정작 미국에서조차 의학이나 생물학 등의 학술용어에서는 '나트륨', '칼륨' 등의 라틴-독일식 용어를 당연하게 사용하고 있다. 말하자면 성분을 부르는 호칭은 '소듐', '포타슘'으로 지칭하지만, 그것이 적용된 화합물이나 용어에 있어서는 전통적인 라틴 조어를 사용하고, '여기에서 kali 는 우리말(영어) 의 포타슘 원소를 가리키는 것이다' 라고 이해하는 식이다.

한 예를 들면, '고 칼륨 혈증' 을 의미하는 'Hyperkalemia'는 hyper+kalium+emia 로서 미국 의학교육에서 가르치고, 미국 의사들이 사용하고, 'kalium 은 영어의 potassium을 말하는 화학 원소다' 라고 당연하게 설명하고 있다. 학생들은 화학기호의 K와 전문용어의 kalium 을 보고 그것을 일상생활에서 사용하는 potassium과는 발음이 다르지만 라틴 조어를 이루는 역사적이자 공식적인 용어라고 이해한다. 미국인들조차 학술용어로서의 원소 표현이 일상 영어에서의 영양성분에 적힌 단어와는 다를 수 있다는 것을 자연스럽게 받아들이는데, 우리나라에서 '화학계에서 영어 표현법 일부가 영어 표기와 같아진다' 라는 지엽적인 간소화 만으로 기존의 다른 모든 학문계와 국민적인 인식의 방향을 바꾸어야 할지는 의문시된다.

원소 기호는 라틴어명인 칼륨에서 따온 K로 유지.[20]

카자흐스탄이 칼륨의 최대 생산국이라는 말이 있지만 코미디 영화 '보랏'에서 나온 드립(영화에선 영어식 명칭인 포타슘이라고 나온다)으로 사실이 아니다. 실제로는 축에도 못 끼며 오히려 카자흐스탄은 우라늄의 최대 생산국이다.


3. 특성[편집]



3.1. 알칼리 금속[편집]


순수한 칼륨은 금속 형태로 되어 있으며 보통 섭취되는 칼륨은 이온상태로 되어 있다. 알칼리 금속답게 금속 칼륨은 반응성이 매우 강해서 물에 닿으면 연기를 내며 보랏빛, 분홍빛으로 아름답게 불타는 모습을 볼 수 있다. 새끼 손가락 손톱의 3분의 1 정도로만 물에 넣어도 굉음과 함께 엄청난 연기를 내뿜으며 반응하며, 증기로 이루어진 버섯구름을 볼 수 있다. 또한 공기 중의 산소와 반응하기도 하고 드라이 아이스 상태의 이산화탄소와 반응하기도 한다.

그런 고로 칼륨을 보관할 때는 석유나 파라핀 속에 보관한다. 하지만 칼륨은 너무나 반응성이 좋기 때문에 석유에 보관해도 약 3개월만 지나면 그 속에 녹아있는 산소와 반응해 과산화물을 만든다. 그리고 이 과산화물은 용기 뚜껑을 열 때 마찰로 인해 폭발할 위험이 있다. 그렇기 때문에 칼륨을 장기 보관 할 때는 아예 아르곤 기체에 쑤셔넣은 다음 용기를 완전 밀봉을 하는데, 유리앰풀에 넣고 앰풀 끝부분을 가열해 녹여서 막는다.


3.2. 산업[편집]


과거에는 비누유리를 만드는데 나무재 잿물에서 추출한 탄산칼륨이나 수산화칼륨을 썼다. 나무재 잿물에 동물의 지방을 반응시켜 만든게 비누의 기원이다. 특히 칼륨비누는 투명한 액상 비누로 샴푸 등에 많이 쓰인다. 유리를 만들 때 첨가하면 녹는 온도가 낮아져 제조가 쉬워지고 유동성이 증가해 복잡한 유리가공 등 다루기가 훨씬 쉬워진다. 굳은 후에도 유리에 탄력성이 있어 충격에도 강해져 강화유리가 된다.

흑색화약의 주성분도 초석이라고 알려진 질산칼륨이다. 그래서 화약을 만드려면 나무를 태운 목탄회(potash)를 물에 녹여 칼륨염 용액을 만든다. 그다음에 요소가 많이 포함된 오줌과 똥 등 을 발효 산화시켜 만든 암모니아와 칼륨염 용액을 반응시켜 질산칼륨 용액을 만들고 이를 끓여 졸여서 결정화 시킨게 화약 제조에서 가장 중요한 재료인 초석이다.

산업적으로는 대부분 수산화칼륨, 탄산칼륨, 염화칼륨, 황산칼륨의 형태로 사용하는데 이런 칼륨염을 집합적으로 칼리회(potash 목탄회) 라고 부른다. 질소 인산과 함께 식물의 성장에 꼭 필요한 원소 성분이라 비료료 쓰이는데 그게 칼리비료 (염화칼륨 또는 황산칼륨)로 가장 큰 칼륨염의 소비처이다. 수산화칼륨은 가성가리라고도 불리며 가성소다라 불리는 수산화나트륨과 함께 대표적인 알칼리로 비누 제조 등 화학공업에 많이 쓰인다. 전세계적으로 화학공업에 칼륨염의 수요가 많은데 톤당 200-500달러로 변동이 심하고 요즘은 330달러 정도로 제법 비싸다.

18세기말에만 해도 칼륨염의 수요는 대부분 대규모로 나무를 벌채해 태워서 그 잿물을 정제해 소성해서 칼리회(탄산칼륨, potash)로 만들었다. 그래서 목탄회라고 부르는 것. 막 독립한 미국은 산림이 풍부해 이런 목탄 칼리회의 세계적 생산지이자 주요 수출품이었다. 미국 특허청의 제 1번 특허가 바로 이 칼리회 제조법 개선일 정도로 중요한 산업이었다. 그 특허장에 서명한 사람이 바로 유명한 조지 워싱턴 본인이다.

하지만 칼리회 생산에는 대량의 나무가 소모되어 이로 인한 대규모 산림벌채와 훼손이 문제가 되었다. 그래서 19세기에 독일에서는 칼륨염이 다량 함유된 암염광산이 발견되어 목탄회 칼륨염 생산은 퇴조하고 암염광산 채굴로 주로 생산했다. 독일은 칼륨염 생산을 거의 독점하다시피해서 1차대전 무렵에 전략물자로 수출을 통제하기도 했다. 그래서 미국은 독일산 칼륨염 산업을 대체하기 위해 유타주 등에서 대규모 암염광산을 개발했다. 하지만 광산의 깊이가 깊어 천연가스 폭발사고가 잦고 인건비가 비싸지자 현대에는 간수를 이용한 채굴로 전환한다. 간수법은 칼륨염 암염광맥에 석유시추 하듯이 파이프를 깊이 박아 우물을 파고 물을 주입해 칼륨염을 함유한 소금층을 녹이고 염이 녹은 소금물 간수(brine)를 뽑아올려 연못같은 염전에서 자연 증발시켜 칼륨염을 생산한다. 그런 간수 연못은 조류나 미생물의 번식을 억제하기 위해 황산구리 등을 첨가해 짙은청색 연못처럼 보인다. 구글 위성지도에서도 볼수 있다.

칼륨은 고릴라 글래스 등의 강화 유리를 만들 때 쓰이기도 한다. 유리를 칼륨염에 넣고 가열하여 유리 내의 나트륨과 이온 치환 반응을 시켜서 응력을 올려 유리의 강도와 경도를 높이는 원리이다.


3.3. 반수치사량[편집]


염화칼륨을 기준으로 반수치사량은 2.5 g/kg이다. 칼륨을 너무 많이 섭취하면 심장 마비가 올 수 있다. 심장 박동은 Na-K 펌프에 의해 신호가 조절되는데, 과량의 칼륨은 이 펌프에 작동 이상을 초래하기 때문이다. 심장 박동을 위한 안정된 활동 전위를 생성하기 위해서는 세포가 충분히 분극 상태를 유지해야 한다. 세포 외부와 내부의 칼륨 농도 차이가 충분히 크다면 막전위는 낮은 상태를 유지하지만, 만약 혈중 칼륨 농도가 지나치게 높아질 경우 막전위가 자연스럽게 탈분극된다. 이렇게 되면 세포가 과민해져서 조그마한 자극에도 빠르게 반응하며, 이는 심장에 이상을 초래하게 되는 주된 원인이 된다.

사형 방법 중 하나인 약물주사형에 쓰는 약물이 염화칼륨이다. 안락사 전문의인 잭 케보키언은 이를 이용해 1998년 호흡마비제인 숙시닐콜린과 염화칼륨을 섞어 주입하는 타나트론이라는 안락사 기계를 개발하기도 했다. 현재도 염화칼륨은 심장 관련 수술에서도 심정지액으로 쓰이기도 하며,[21] 동물의 안락사 주사약물에도 사용 되기도 한다.


3.4. 무기염류[편집]


인체에도 0.2% 약 140 그램 정도 포함되어 있고 극히 일부는 방사성 칼륨이라 대표적인 인체내에 있는 방사성동위원소이다. 그외 바나나에도 칼륨이 풍부하고 게토레이 등의 스포츠음료에도 들어있다. 체내에서 나트륨과 함께 콩팥이 강력하게 농도를 조절하는 무기염류 중 하나로, 나트륨은 135~145mmEq/L, 칼륨은 3.5~5.5mmEq/L가 정상범위이다. 정상 범주가 나트륨과는 달리 2mmEq/L밖에 안 될 정도로 폭이 좁으며, 나트륨은 급격하게 농도가 변하지 않는 이상 사망까지 고려할 정도는 아닌데 칼륨은 조금만 수치가 벗어나도 바로 부정맥을 일으키기 때문에 그만큼 예민하게 조절되고 있다.

식물체 내에서 수분을 조절하는 역할을 하기 때문에 식물에는 칼륨이 적건 많건 함유되어 있다. 따라서 질소, (인산염)과 함께 비료의 3대 요소로 꼽힌다. 칼륨은 체내에서 염분(나트륨)과 상호 작용을 하여 균형을 이루게 되는데, 식물을 그냥 먹으면 짭짤한 것이 땡기는 이유가 바로 칼륨 때문이다.

초식동물이 소금을 매우 좋아하는 이유이기도 하다. 주식이 풀이다보니 칼륨 섭취량은 많은데 나트륨을 섭취할 기회가 없다보니 나트륨 확보에 필사적인데 이를 위해 땀, 소변, 흙도 먹으며 특히 소금만 보면 환장한다. 이를 이용해 고대 로마에서는 염소를 이용한 간지럽히기 고문도 있었다고 한다. 자세한 내용은 이 문서를 참조. 서진의 초대 황제사마염후궁들도 이를 이용해 후궁 처소를 방문하는 황제의 수레를 끄는 의 미끼로 소금물을 뿌리기도 했다. 한편 대부분의 식물은 생장하는데 나트륨을 필요로 하지 않고 오히려 칼륨을 필요로 한다.

칼륨이 많이 함유된 식품으로는 다시마(100g 당 1,242mg), 시금치(100g 당 558mg), 아보카도(100g 당 485mg), 돼지감자(100g 당 429mg), 바나나(100g 당 358mg), 고구마(100g 당 337mg), 수박, 토마토, 감자 등이 대표적이다. 식물에는 칼륨이 적건 많건 거의 대부분 함유되어 있기 때문에 육식만으로 식사를 하지 않는 한 딱히 결핍이 일어나지는 않는다. 맥주 효모에도 많이 함유되어 있다.

KFC에서 닭고기 밑간을 할 때 칼륨, 소금, MSG를 1:1:2 비율로 넣는다는 말이 있었으나, 식품 영양 성분 데이터 베이스에는 칼륨이 없다고 나와있다.

KFC 공식문서를 보면 Original Recipe® Chicken에는 Potassium이 없고, Original Recipe® Bites에만 Potassium이 포함되어 있는 것을 알 수 있다.

참고로 저염 소금에 나트륨 대신 들어가는 것이 칼륨이다. 즉, 염화나트륨의 절반 정도를 염화칼륨으로 대체한 것이 저염 소금이다. 혈압을 조절해야 하는 고혈압 환자들이 염화나트륨 대신 염화칼륨을 먹는다.

신장이 좋지 않은 사람이나 신부전 환자에게는 칼륨이 치명적이다. 특히 투석을 받고 있는 신부전 환자는 체내에 있는 칼륨을 스스로 배출 할 수 없는데, 칼륨이 다량 함유된 음식을 과다 섭취하여 체내 칼륨 수치가 일정 수치 이상으로 높아지면 심장마비를 일으킬 수 있기 때문이다. 칼륨이 들어있는 음식은 모두 피하고, 야채나 과일은 데쳐서 먹어야 한다. 칼륨이 든 채소류는 시금치처럼 섭취를 위해 물에 데치고 헹구면 칼륨이 많이 빠져 나간다. 식이조절을 위해 야채를 매우 많이 먹는 상황이거나 신장이 약하다면 데쳐서 헹궈먹는 것이 좋다. 혹은 먹을 채소를 조리전 장시간 물에 담아 칼륨을 낮추는 방법도 있다.


4. 동위원소[편집]


동위원소 표의 반감기
[ 펼치기 · 접기 ]
161Gd
<1h
159Gd
1 h-1 d
149Gd
1 d-10 d
146Gd
10 d-100 d
153Gd
100 d-10 y
148Gd
10 y-10 ky
150Gd
10 ky-100My
152Gd
100My
158Gd
안정



동위원소 표(11-20)

[ 펼치기 · 접기 ]
Z
11
12
n
Na
Mg
13
14
7
18Na
19Mg
Al
Si
8
19Na
20Mg
21Al
22Si
15
16
9
20Na
21Mg
22Al
23Si
P
S
10
21Na
22Mg
23Al
24Si
25P
26S
17
18
11
22Na
23Mg
24Al
25Si
26P
27S
Cl
Ar
12
23Na
24Mg
25Al
26Si
27P
28S
29Cl
30Ar
19
20
13
24Na
25Mg
26Al
27Si
28P
29S
30Cl
31Ar
K
Ca
14
25Na
26Mg
27Al
28Si
29P
30S
31Cl
32Ar
33K
34Ca
15
26Na
27Mg
28Al
29Si
30P
31S
32Cl
33Ar
34K
35Ca
16
27Na
28Mg
29Al
30Si
31P
32S
33Cl
34Ar
35K
36Ca
17
28Na
29Mg
30Al
31Si
32P
33S
34Cl
35Ar
36K
37Ca
18
29Na
30Mg
31Al
32Si
33P
34S
35Cl
36Ar
37K
38Ca
19
30Na
31Mg
32Al
33Si
34P
35S
36Cl
37Ar
38K
39Ca
20
31Na
32Mg
33Al
34Si
35P
36S
37Cl
38Ar
39K
40Ca
21
32Na
33Mg
34Al
35Si
36P
37S
38Cl
39Ar
40K
41Ca
22
33Na
34Mg
35Al
36Si
37P
38S
39Cl
40Ar
41K
42Ca
23
34Na
35Mg
36Al
37Si
38P
39S
40Cl
41Ar
42K
43Ca
24
35Na
36Mg
37Al
38Si
39P
40S
41Cl
42Ar
43K
44Ca
25
36Na
37Mg
38Al
39Si
40P
41S
42Cl
43Ar
44K
45Ca
26
37Na
38Mg
39Al
40Si
41P
42S
43Cl
44Ar
45K
46Ca
27
39Mg
40Al
41Si
42P
43S
44Cl
45Ar
46K
47Ca
28
40Mg
41Al
42Si
43P
44S
45Cl
46Ar
47K
48Ca
29
42Al
43Si
44P
45S
46Cl
47Ar
48K
49Ca
30
43Al
44Si
45P
46S
47Cl
48Ar
49K
50Ca
31
46P
48Cl
49Ar
50K
51Ca
32
48S
49Cl
50Ar
51K
52Ca
33
50Cl
51Ar
52K
53Ca
34
51Cl
52Ar
53K
54Ca
35
53Ar
54K
55Ca
36
55K
56Ca
37
56K
57Ca
38
58Ca
39
40



칼륨은 24 종의 동위원소가 알려져 있으며, 3종이 자연적으로 산출된다. 이 중 유일한 자연 방사성 동위원소40 K 이 0.012%를 차지하므로 아주 희귀하지는 않은 편이다. 반감기는 엄청나게 길어서 12억 5천만년쯤 된다. 이러한 특성을 이용해 연대측정법에 사용하기도 한다. 40 K 가 분해하면서 생기는 원소가 아르곤-40( 40 Ar )이기 때문에 아르곤은 다른 비활성 기체에 비하면 상당히 흔한 원소이다.

칼륨-40은 방사선을 방출하므로 칼륨이 많이 함유된 바나나가 방사선 검출기에서 걸리기도 한다고 한다. 링크. 화학적 성질은 당연히 보통 칼륨과 같으므로 사람 몸 속에도 들어있다. 사실 인체에서 가장 많은 방사성 물질이 방사성 칼륨이다. 저염 소금의 절반은 염화칼륨이므로 방사선이 조금씩 나온다. 저염 소금으로 필름을 며칠 간에 걸쳐 감광시키는 실험도 있다.


5. 여담[편집]


  • 주기율표에는 원자량 순서와 원자 번호 순서가 일치하지 않는 원소쌍이 단 세 개뿐인데, 아르곤과 칼륨이 이 중 하나이다. 나머지 두 쌍은 코발트니켈, 아이오딘텔루륨이다.


6. 관련 문서[편집]




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-20 06:32:10에 나무위키 칼륨 문서에서 가져왔습니다.

[15] 이때, [math(\rm Na)](나트륨)도 같이 확정지어진다. 사실 베셸리우스가 처음 발표한 논문에서는 험프리의 공로를 인정하여 sodium, potassium에서 딴 [math(\rm So)], [math(\rm Po)]을 썼는데 1년도 채 되지않아 현재의 [math(\rm Na)], [math(\rm K)]로 변경했다. 아무래도 potash → potassium이 어원학적으로 적절하지 않다는 클라프로트의 지적에 공감한 듯 하다.[16] 프랑스어 potassium, 이탈리아어 potassio와 스페인어 potasio 등. 참고로 프랑스어에서는 원소명에 붙는 -um을 앙이 아닌 옴으로 발음한다.[17] 언어 순화를 게르만식으로 많이 하는 언어지만 원소 명칭은 순화가 불가능하다고 생각했는지 Kalín, Natrín처럼 쓴다.[18] 농대의 경우, 이쪽은 예전 이름을 따라 칼륨을 칼리라고 부르는 경우가 있다. 칼리가 사용되는 가장 익숙한 단어가 바로 청산가리. 칼리의 일본식 발음에서 왔다.[19] 이후 포타슘도 인정되었다.[20] 그런 사례는 주기율표에 매우 많다. 나열하자면 나트륨, , 구리, , 주석, 안티모니, 텅스텐, , 수은, 등이 있다. 이미 P는 의 원소기호로 사용중이고, Po는 폴로늄, Pt는 백금, Pa는 프로트악티늄, Ps는 포지트로늄의 원소기호로 이미 사용하고 있어서 바꾸기도 힘들다.[21] 종종 뉴스에서 의사나 간호사의 자살 뉴스가 나온다면 거의 칼륨을 주사한 것이다. 따라서 엠플에도 반드시 혈관내 직접 주사 금지라는 경고문구를 써놓고 있다