연산

덤프버전 :

1. 수학의 용어
1.1. 정의
1.2. 단항연산
1.3. 이항연산
1.4. 항등원과 역원
1.5. 교환법칙과 결합법칙
1.6. 닫혀 있다
1.7. 관련 항목
2. 조선의 제10대 임금 연산군봉호


1. 수학의 용어[편집]


[[대수학|대수학

Algebra
]]

틀 색상에 대한 토론이 진행중입니다. #
[ 펼치기 · 접기 ]
이론
기본 대상
연산 · 항등식(가비의 이 · 곱셈 공식(통분 · 약분) · 인수분해) · 부등식(절대부등식) · 방정식(풀이 · (무연근 · 허근 · 비에트의 정리(근과 계수의 관계) · 제곱근(이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술(시계 산술)
수 체계
자연수(소수) · 정수(음수) · 유리수 · 실수(무리수(초월수) · 초실수) · 복소수(허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group)
대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring)
아이디얼
체(field)
갈루아 이론 · 분해체
대수
가환대수 · 리 대수 · 불 대수(크로네커 델타)
마그마·반군·모노이드
자유 모노이드 · 가환 모노이드
선형대수학
벡터 · 행렬 · 텐서(텐서곱) · 벡터 공간(선형사상) · 가군(Module) · 내적 공간(그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론
함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 층 이론(층들) · 토포스 이론 · 타입 이론
대수기하학
대수다양체 · 스킴 · 사슬 복합체(에탈 코호몰로지) · 모티브
대수적 정수론
타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학
스펙트럼 정리
표현론
실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재






1.1. 정의[편집]


연산(, operation)은 수학에서 하나 이상의 피연산자를 연산자의 정의에 따라 계산하여 하나의 결과값을 도출해 내는 과정을 말한다. 피연산자가 1개일 경우 단항연산, 2개일 경우 이항연산, n개일 경우 n항연산이라고 한다. 단항연산은 함수에 대응되는 개념이며 n항연산은 n개의 정의역으로 1개의 치역을 도출하는 사상에 대응되는 개념이라고 할 수 있다. (a1, a2, ... , an) → (b)

예를 들면 1 + 2 = 3 에서 1과 2가 피연산자, +가 연산자, 3이 결과값이라고 할 수 있다.

가장 유명한 연산으로 사칙연산을 꼽을 수 있다.


1.2. 단항연산[편집]


피연산자가 하나인 연산. 절대값 기호 [math(\left| \cdot \right|)][1]최대 정수 함수 [math(\lfloor \cdot \rfloor)][2], 최소 정수 함수 [math(\lceil \cdot \rceil)], 그리고 여집합 연산[math(\complement A)][3] 등이 있다. 복소수에서는 실수부와 허수부를 추출하는 [math(\Re(z), \Im(z))][4]가 있다.
지수는 형태상으로 단항연산으로 착각하기 쉽지만 이항연산이다. 밑과 지수 두 피연산자를 받는다.


1.3. 이항연산[편집]


사칙연산을 비롯하여 거듭제곱(및 거듭제곱근), 테트레이션(tetration)[5] 등이 있다.

정말 특이한 연산[6]을 빼고는 삼항연산부터는 정의할 의미가 없는 게, A + B + C 같은 연산은 일단 A + B 를 구한 뒤 거기다가 + C 를 하면 되기 때문에 결국엔 이항연산으로 환원된다.


1.4. 항등원과 역원[편집]


예를 들어 연산 ◎에 대해 [math(a)] ◎ [math(e=a)] 가 성립할 때, [math(e)]를 연산 ◎의 항등원이라고 한다. 덧셈의 항등원은 0, 곱셈의 항등원은 1이다. 사칙연산이 아닌 연산자에 대해서도 항등원이라는 개념을 적용할 수 있는데, 컨볼루션([math(\ast)])의 항등원은 디랙 델타 함수 [math(\delta (t))]가 될 수 있겠다.

연산 ◎에 대해 a ◎ x = e 가 성립할 때, x를 연산 ◎에 대한 a의 역원이라고 한다. 덧셈에 대한 a의 역원은 -a, 곱셈에 대한 a(a≠0)의 역원은 1/a이다.

또한, 항등원과 역원의 개수는 달라질수있는데 대표적으로 미분연산자가 있으며, 피연산자에 따라 달라질수도 있다.


1.5. 교환법칙과 결합법칙[편집]


연산 ◎에 대해 a ◎ b = b ◎ a가 성립할 때, 연산 ◎는 교환법칙을 만족시킨다고 한다. 또한 연산 ◎에 대해 (a ◎ b ) ◎ c = a ◎ (b ◎ c)가 성립할 때, 연산 ◎는 결합법칙을 만족시킨다고 한다. 덧셈과 곱셈은 복소수 범위에서 교환법칙이 성립하나, 뺄셈과 나눗셈은 그렇지 않다.


1.6. 닫혀 있다[편집]


a와 b가 연산 ◎이 정의된 집합 A의 부분집합인 B에 속해 있을 때 연산 ◎에 대해 a ◎ b = c 역시 집합 B에 속할 때, 연산 ◎는 집합 B에 대해 닫혀 있다고 표현한다.


1.7. 관련 항목[편집]




2. 조선의 제10대 임금 연산군봉호[편집]


파일:나무위키상세내용.png   자세한 내용은 연산군 문서를 참고하십시오.


3. 대한민국의 지명[편집]


  • 충청남도 논산시의 연산連山면
  • 부산광역시 연제구 연산동: 연산역이 위치해있다.
  • 광주광역시 광산구 연산동
  • 전라남도 목포시 연산동
  • 황해북도 연산延山군
  • 충청북도 청주시의 옛 지명 연산燕山[7]

파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-09 13:51:40에 나무위키 연산 문서에서 가져왔습니다.

[1] 절대값 기호 속에 들어가는 수, 행렬, 벡터 등등을 정의에 따라 실수로 변환해 주는 연산. 이것을 일반화한 개념이 노름이다.[2] 안에 들어간 실수의 소수점 이하 부분을 제거하여 정수로 만드는 연산.[3] 중등교육과정에서는 [math(A^c)]가 친숙할 것이다.[4] 고등학교/대학교 학부 수준에는 [math(\mathrm{Re}(z), \mathrm{Im}(z))] 형태로 배우는데 [math(\Re(z), \Im(z))]가 비교적 낯선 형태이기 때문이다. 왠지 외계문자 같은 느낌도 있다. 참고로 [math(\Im)]는 허수부(Imaginary part)의 앞글자를 딴 I이다.[5] xx를 x↑↑2, x(x↑↑2)를 x↑↑3 이런 식으로 정의하는 연산. 지수로는 나타낼 수 없는 매우 큰 수를 나타날 때 쓰인다.[6] 행렬이나 연산, 적분[7] 연산군의 연산이 이 지명에서 붙어졌다. 통일신라 시대 붙여진 지명이며 고려시대에 문의군文義으로 개칭됨.