하위헌스 원리

덤프버전 :

분류


고전역학
Classical Mechanics


[ 펼치기 · 접기 ]
기본 개념
텐서(스칼라 · 벡터) · 모멘트 · 위치 · 거리(변위 · 이동거리) · 시간 · 공간 · 질량(질량중심) · 속력(속도 · 가속도) · 운동(운동량) · · 합력 · 뉴턴의 운동법칙 · (일률) · 에너지(퍼텐셜 에너지 · 운동 에너지) · 보존력 · 운동량 보존의 법칙 · 에너지 보존 법칙 · 질량 보존 법칙 · 운동 방정식
동역학
비관성 좌표계(관성력) · 항력(수직항력 · 마찰력) · 등속직선운동 · 등가속도 운동 · 자유 낙하 · 포물선 운동 · 원운동(구심력 · 원심력 · 등속 원운동) · 전향력 · 운동학 · 질점의 운동역학 · 입자계의 운동역학 · 운동 방정식
정역학 강체 역학
정적 평형 · 강체 · 응력(/응용) · 충돌 · 충격량 · 각속도(각가속도) · 각운동량(각운동량 보존 법칙 · 떨어지는 고양이 문제) · 토크(비틀림) · 관성 모멘트 · 관성 텐서 · 우력 · 반력 · 탄성력(후크 법칙 · 탄성의 한계) · 구성방정식 · 장동 · 소성 · 고체역학
천체 역학
중심력 · 만유인력의 법칙 · 이체 문제(케플러의 법칙) · 기조력 · 삼체문제(라그랑주점) · 궤도역학 · 수정 뉴턴 역학 · 비리얼 정리
진동 파동
각진동수 · 진동수 · 주기 · 파장 · 파수 · 스넬의 법칙 · 전반사 · 하위헌스 원리 · 페르마의 원리 · 간섭 · 회절 · 조화 진동자 · 산란 · 진동학 · 파동방정식 · 막의 진동 · 정상파 · 결합된 진동 · 도플러 효과 · 음향학
해석 역학
일반화 좌표계(자유도) · 변분법{오일러 방정식(벨트라미 항등식)} · 라그랑주 역학(해밀턴의 원리 · 라그랑지언 · 액션) · 해밀턴 역학(해밀토니언 · 푸아송 괄호 · 정준 변환 · 해밀턴-야코비 방정식 · 위상 공간) · 뇌터 정리 · 르장드르 변환
응용 및 기타 문서
기계공학(기계공학 둘러보기) · 건축학(건축공학) · 토목공학 · 치올코프스키 로켓 방정식 · 탄도학(탄도 계수) · 자이로스코프 · 공명 · 운동 방정식



1. 개요
2. 정성적인 접근
3. 정량적인 접근
3.1. 반사의 법칙
3.2. 굴절의 법칙


1. 개요[편집]


하위헌스의 원리(Huygens' principle)[1]는 파동이 어떻게 진행하는가를 나타내는 원리이다. 빛이 아니더라도 역학적 파동의 경우도 이 원리로써 접근할 수 있다.
호이겐스-프레넬 원리(Huygens-Fresnel原理)라고도 한다. 호이겐스의 권장표기는 하위헌스이다.[2]

2. 정성적인 접근[편집]


파일:external/upload.wikimedia.org/Huygens_brechung.png
이미지 출처
파면 위에서 위상(phase)이 같은 지점들을 파원으로 간주한다. 일정 시간동안 퍼져나간 파동들에 접하는 곡선을 찾는다. 이것이 다음 위상의 파면이 되며, 새로운 파원이 된다.


3. 정량적인 접근[편집]


파동의 진행을 정확하게 알아보기 위해서는 파원을 충분히 많이 그려야 하지만 여기서는 간략한 맥락으로 서술한다.


3.1. 반사의 법칙[편집]


파일:하위헌스 원리/반사.png

위 그림은 반사하는 파동이 진행하는 모습을 나타낸 것이다. 편의상 [math( O,P,Q )]세 지점을 기준으로 살펴보면 아래와 같다.

  • [math( O,P'',Q'' )]과 [math( O',P',Q )]의 위상은 각각 같다.
  • [math( O,P,Q )]는 동일한 위상차를 두고 있다.
위 두 사실에 근거하면 아래와 같은 관계를 유추할 수 있다. 파동의 진행속도가 언제나 일정하기 때문이다.

  • [math( \bar{OP}=\bar{PQ},\bar{Q''Q}=2\bar{P''P}=\bar{OO'}=2\bar{PP'} )]
그림의 초록색 선은 위상이 같은 지점들을 이은 파면이다. 이 파면은 파동의 진행방향과 수직이다. [math(\triangle OO'Q,\triangle QQ''O)]는 서로 합동이기 때문에 그림에 표시된 두 각은 동일하다.
[math(\theta=\theta ' )]

따라서 법선과 이루는 각인 입사각과 반사각은 같으며, 이는 반사의 법칙을 이끌어낸다.


3.2. 굴절의 법칙[편집]


파일:하위헌스 원리/굴절.png

위 그림은 반사하는 파동이 진행하는 모습을 나타낸 것이다. 마찬가지로 편의상 [math( O,P,Q )]세 지점을 기준으로 살펴보면 아래와 같다.

  • [math( O,P'',Q'' )]과 [math( O',P',Q )]의 위상은 각각 같다.
  • [math( O,P,Q )]는 동일한 위상차를 두고 있다. [math( O, Q )] 사이의 시간차는 [math(\Delta t)]라 한다.
그림에서 경계선 위쪽 영역의 파동의 진행속도를 [math(v_1)], 아래쪽은 [math(v_2)]라 두면 아래 관계식이 성립한다. 여기서

  • [math( \bar{OP}=\bar{PQ})]
  • [math( \bar{Q''Q}=2\bar{P''P}=\bar{OQ}\sin\theta=v_1 \Delta t, \bar{OO'}=2\bar{PP'}=\bar{OQ}\sin\theta'=v_2 \Delta t )]
그림의 초록색 선은 위상이 같은 지점들을 이은 파면이다. 이 파면은 파동의 진행방향과 수직이다. 위 식에서 길이의 비를 유추할 수 있다.
[math(\displaystyle {\bar{Q''Q} \over \bar{OO'}} = {\sin\theta \over \sin\theta'} = {v_1 \over v_2})]

따라서 법선과 이루는 각인 입사각과 굴절각은 굴절의 법칙(스넬의 법칙)을 만족하게 된다.


파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-25 06:06:10에 나무위키 하위헌스 원리 문서에서 가져왔습니다.

[1] 영어식 발음인 호이겐스의 원리로도 알려져있다.[2] 우리말샘