헤비사이드 계단함수

덤프버전 :



1. 개요
2. u(0)의 값
3. 라플라스 변환
4. 관련 문서


1. 개요[편집]


Heaviside Step Function

영국전기공학올리버 헤비사이드가 연구한 함수라 하여 명명되었으며, 특수함수의 일종이다. 단위 계단함수(Unit Step Function, )라고도 하며 정의는 다음과 같다.

[math(\displaystyle u(x)\equiv\int_{-\infty}^{x}\delta(t)\,\mathrm{d}t)]

위에서 [math(\delta(x))]는 디랙 델타 함수이다. 중요성에 비해 표기가 통일되어 있지 않아 [math(H(x))], [math(\theta(x))]로 표기하기도 한다. 이 문서에서는 [math(u(x))]라고 표기했다.[1][2]

구체적인 함숫값은 아래와 같다. 단, [math(x=0)]일 때는 대부분 [math(1/2)]로 정의하나 아래 항목에서와 같이 여러 의견이 있다.

[math(\displaystyle u(x) = \begin{cases}
1 & (x>0)\\
1/2 & (x=0)\\
0 & (x<0)
\end{cases} )]
[1] G. B. Arfken의 MMP에서도 [math(u)] 표기를 쓴다.[2] 울프럼 알파와 같은 울프럼 언어에서는 [math(\theta(x))]를 쓴다.


적분 기호 없이 간단하게 정의하자면 다음과 같다.

[math(u(x)=\dfrac{1}{2}\left(\mathrm{sgn}\,x+1\right))]

위에서 [math(\mathrm{sgn}\,x)]는 부호 함수이다. 형태에서 보듯 부호 함수를 절반으로 줄여 놓고 [math(x)]축 위쪽으로 올려 놓은 모양새라 부호 없는 부호 함수라고 이해해도 무리가 없을 정도.

아래는 헤비사이드 계단함수의 그래프를 나타낸 것이다. 이때, [math(u(0)=1/2)]로 택하였다.

파일:나무_헤비사이드_계단함수_그래프.png


2. u(0)의 값[편집]


수학자마다 [math(u(0))]의 함숫값 정의가 달라 논란이 많다.[3]
  • [math(\boldsymbol{u(0)={1}/{2}})] 설
    • 다수설로, 위의 부호 함수로 쉽게 정의할 수 있고 [math({\mathrm{d}}(\mathrm{sgn}\,x)/\mathrm{d}x=2\delta(x))]가 성립한다는 근거를 들어 설명한다.
  • [math(\boldsymbol{u(0)=0})] 설
    • 자연수 판별 함수를 이용해 [math(u(x)=\bold{1}_{\mathbb N}(\mathrm{sgn}\,x))]로 깔끔하게 정의할 수 있기 때문에 선호하는 경우가 있다.
  • [math(\boldsymbol{u(0)=1})] 설
    • 위와 비슷하나[4], 0으로 나누기 같은 골칫거리가 생기지 않아서 선호하는 경우가 있다.

한편 이 함수로 유도되는 발판 함수(ramp function) [math(R(x) = x u(x))][5]는 정의상 어차피 0으로 곱해져버리기 때문에 이런 논란은 없다.


3. 라플라스 변환[편집]


헤비사이드 함수의 라플라스 변환은 다음과 같다.

[math(\begin{aligned} \displaystyle \mathcal{L}\{u(t-a)\}(s) &= \int_{0}^{\infty}e^{-st}u(t-a){\,\mathrm{d}}t \\&=\int_{a}^{\infty}e^{-st}{\,\mathrm{d}}t \\&= \biggl[\frac{e^{-st}}{-s}\biggr]_{a}^{\infty}\\&=\frac{e^{-as}}{s} \end{aligned})]
[3] 사실 크게 유의미한 논란은 아닌 것이 다수론인 [math(1/2)]을 따르되 굳이 정수로 만들고 싶으면 거기에 바닥함수나 천장함수만 씌우면 되기 때문이다.[4] 이 경우 정의가 범자연수 집합을 쓴 [math(u(x)=\bold{1}_{\mathbb N_{0}}(\mathrm{sgn}\,x))]로 바뀐다.[5] 헤비사이드 계단함수의 원시함수이기도 하다.

여기서 [math(a \ge 0)]이다.

한편, [math(u(t))]의 경우 간단히 [math(\mathcal{L}\{u(t)\}(s)=s^{-1})]이 된다.


4. 관련 문서[편집]




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-26 14:19:52에 나무위키 헤비사이드 계단함수 문서에서 가져왔습니다.