부분적분/LIATE 법칙

덤프버전 :

파일:나무위키+상위문서.png   상위 문서: 부분적분

Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리




1. 개요
2. 상세
2.1. 로다삼지
3. LIATE 법칙이 적용되지 않는 경우
3.1. 삼각함수
3.2. 지수함수
3.3. 삼각함수 + 지수함수 합성
4. 특수함수의 경우



1. 개요[편집]


부분적분을 할 때 쓰이는 방법론 중 하나로, 브래들리 대학의 Herbert Kasube가 제안한 LIATE 법칙을 설명한다.


2. 상세[편집]


L
Logarithmic functions (로그함수)
[math(\ln{x})], [math(\log_{a}{x})] 등[1]
I
Inverse trigonometric functions (역삼각함수)
[math(\sin^{-1}{x})], [math(\tan^{-1}{x})] 등
A
Algebraic functions (대수적 함수)
[math(x^{2})], [math(\dfrac{x^2-1}{x^2+1})], [math(\sqrt{x+\sqrt{x}})] 등
T
Trigonometric functions (삼각함수)
[math(\sin{x})], [math(\tan{x})] 등
E
Exponential functions (지수함수)
[math(e^{x})], [math(\sinh x)][2][3]

표의 위쪽(LIATE 기준 왼쪽)으로 갈수록 미분 우선이고, 표의 아래쪽(LIATE 기준 오른쪽)으로 갈수록 적분 우선이다. 이러한 우선순위가 존재하는 까닭은 로그함수로 갈 수록 적분이 까다로워지기 때문이다. 다만, 로그함수와 역삼각함수의 경우에는 우선순위가 유동적인 경우가 많아 LIATE 법칙이 항상 옳은 것은 아니다. 때로는 ILATE 순이 더 적절할 수도 있다.


2.1. 로다삼지[편집]


한국의 고등학교 교육과정에서는 역삼각함수를 배우지 않고, 대수적 함수라는 표현 대신 다항함수[4]라는 표현을 쓰기 때문에 이 순서를 'LATE 법칙'이라고 하며, '로다삼지'라는 순서로도 흔히 외운다.


3. LIATE 법칙이 적용되지 않는 경우[편집]


다만 때에 따라서는 적분 우선이라는 삼각함수, 지수함수 적분이 단순 로그함수 적분보다 훨씬 어려워지기도 한다. 특수함수가 나오면 다행이고[5], 아예 대응 특수함수조차 없는 상황도 꽤 잦다. 이런 내막을 모른 채 로다삼지를 과신하면 계산이 안드로메다로 간다(...).

대응 특수함수 적분식이 없는 함수는 울며 겨자먹기로 (대학교 미적분학 과정에서) 테일러 전개 혹은 중적분의 극좌표 변환(가우스 적분)을 활용하여 적분하거나, (공업수학에서) 라플라스 변환/푸리에 변환[6]으로 돌아서 가는 방법을 사용해야 한다.


3.1. 삼각함수[편집]


  • [math(\displaystyle \int \sin x^2\, \mathrm{d}x = S(x) + \mathsf{const.})] - 프레넬 사인 적분 함수를 사용해야 한다.[7]
  • [math(\displaystyle \int \cos x^2\, \mathrm{d}x = C(x) + \mathsf{const.})] - 프레넬 코사인 적분 함수를 사용해야 한다.[8]
  • [math(\displaystyle \int \sin(x^{-1}) \, \mathrm{d}x = -\mathrm{Ci}(x^{-1}) + x \sin(x^{-1}) + \mathsf{const.})] - 코사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \cos(x^{-1}) \, \mathrm{d}x = \mathrm{Si}(x^{-1}) + x \cos(x^{-1}) + \mathsf{const.})] - 사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \sin |x| \, \mathrm{d}x = (1- \cos x) \ \mathrm{sgn}(x)+1 + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \tan |x| \, \mathrm{d}x = - \ln \circ \cos (x) \ \mathrm{sgn}(x) + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \csc |x| \, \mathrm{d}x = \ln \circ \tan \left(\frac{x}{2}\right) \mathrm{sgn}(x) + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \cot |x| \, \mathrm{d}x = \ln \circ \sin(x) \ \mathrm{sgn}(x) + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \left|\sin x \right| \mathrm{d}x = - \mathrm{sgn} \circ \sin(x) \cos x+ \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \left|\cos x \right| \mathrm{d}x = \mathrm{sgn} \circ \cos(x) \sin x+ \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \left| \tan x \right| \mathrm{d}x = -\mathrm{sgn} \circ \tan(x) \ln \left| \cos x \right| + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \left| \sec x \right| \, \mathrm{d}x = \mathrm{sgn}\left(\sec x\right) \ln \left|\sec x + \tan x\right| + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \left| \csc x \right| \, \mathrm{d}x = -\mathrm{sgn}\left(\csc x\right) \ln \left|\csc x + \cot x\right| + \mathsf{const.} = \mathrm{sgn}\left(\csc x\right) \ln \left|\csc x - \cot x\right| + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int \left| \cot x \right| \, \mathrm{d}x = \mathrm{sgn}\left(\cot x\right) \ln \left|\sin x\right| + \mathsf{const.})] - 부호 함수를 사용해야 한다.
  • [math(\displaystyle \int x \tan x \, \mathrm{d}x = \frac{i}{2}(\mathrm{Li}_2(-e^{2ix})+x(x+2i \ln(1+e^{2ix})))+ \mathsf{const.})] - 폴리로그함수를 사용해야 한다.
  • [math(\displaystyle \int x \csc x \, \mathrm{d}x = -2 i \mathrm{Li}_2(e^{i x}) + \frac{i}{2} \mathrm{Li}_2(e^{2 i x}) - 2 x \tanh^{-1} e^{i x} + \mathsf{const.})] - 폴리로그함수역쌍곡선 탄젠트를 사용해야 한다.
  • [math(\displaystyle \int x \sec x \, \mathrm{d}x = -i (\mathrm{Li}_2(i e^{i x}) - \mathrm{Li}_2(\sin x -i \cos x) + 2 x \tan^{-1}e^{i x}) + \mathsf{const.})] - 폴리로그함수역탄젠트를 사용해야 한다.
  • [math(\displaystyle \int x \cot x \, \mathrm{d}x = \frac{1}{2}(-i \mathrm{Li}_2(-e^{2ix})-ix^2+2x \ln(1-e^{2ix}))+ \mathsf{const.})] - 폴리로그함수를 사용해야 한다.
  • [math(\displaystyle \int \frac{\sin x}{x} \, \mathrm{d}x = \mathrm{Si}(x) + \mathsf{const.})] - 사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \frac{\cos x}{x} \, \mathrm{d}x = \mathrm{Ci}(x) + \mathsf{const.})] - 코사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \frac{\tan x}{x} \, \mathrm{d}x)] - 대응하는 적분식 자체가 없다.
  • [math(\displaystyle \int \frac{\csc x}{x} \, \mathrm{d}x)] - 대응하는 적분식 자체가 없다.
  • [math(\displaystyle \int \frac{\sec x}{x} \, \mathrm{d}x)] - 대응하는 적분식 자체가 없다.
  • [math(\displaystyle \int \frac{\cot x}{x} \, \mathrm{d}x)] - 대응하는 적분식 자체가 없다.

물론 위에 적분식이 없다고 언급된 네 함수는 직접 대응시키는 적분식은 없지만, 테일러 급수 전개를 통해서 무한급수의 형태로 만드는 것은 가능하다.


3.2. 지수함수[편집]


  • [math(\displaystyle \int e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2} \mathrm{erf}(x) + \mathsf{const.})] - 오차함수를 사용해야 한다.
  • [math(\displaystyle \int \frac{e^x}{x} \mathrm{d}x = \mathrm{Ei}(x) + \mathsf{const.})] - 지수 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int e^{\frac{1}{x}} \mathrm{d}x = xe^{\frac{1}{x}} + \mathrm{Ei}\left(\frac{1}{x}\right) + \mathsf{const.})] - 지수 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int x^{x} \mathrm{d}x)] - 대응하는 적분식 자체가 없다.


3.2.1. 쌍곡선 함수[편집]


  • [math(\displaystyle \int x\tanh{x}\,\mathrm{d}x = -\frac{1}{2} \,\mathrm{Li}_2(-e^{-2x}) + \frac{x^2}{2} + x\ln{(e^{-2x}+1)} + \mathsf{const.})] - 폴리로그함수를 사용해야 한다.
  • [math(\displaystyle \int x\,\mathrm{coth}\,{x}\,\mathrm{d}x = -\frac{1}{2} \,\mathrm{Li}_2(e^{-2x}) + \frac{x^2}{2} + x\ln{(-e^{-2x}+1)} + \mathsf{const.})] - 폴리로그함수를 사용해야 한다.
  • [math(\displaystyle \int x\,\mathrm{sech}\,{x}\,\mathrm{d}x = i\,\mathrm{Li}_2(ie^{-x}) - i\,\mathrm{Li}_2(-ie^{-x}) + 2x\,\mathrm{arccot}{(e^x)} + \mathsf{const.})] - 폴리로그함수를 사용해야 한다.
  • [math(\displaystyle \int x\,\mathrm{csch}\,{x}\,\mathrm{d}x = \mathrm{Li}_2(\sinh{x}-\cosh{x}) - \mathrm{Li}_2(e^{-x}) - 2x\,\mathrm{arcoth}{(e^x)} + \mathsf{const.})] - 폴리로그함수를 사용해야 한다.
  • [math(\displaystyle \int \frac{\sinh{x}}{x} \,\mathrm{d}x = \mathrm{Shi}(x) + \mathsf{const.})] - 쌍곡 사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \frac{\cosh{x}}{x} \,\mathrm{d}x = \mathrm{Chi}(x) + \mathsf{const.})] - 쌍곡 코사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \sinh{e^x}\,\mathrm{d}x = \mathrm{Shi}(e^x) + \mathsf{const.})] - 쌍곡 사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \cosh{e^x}\,\mathrm{d}x = \mathrm{Chi}(e^x) + \mathsf{const.})] - 쌍곡 코사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \sinh(x^{-1}) \,\mathrm{d}x = x \sinh(x^{-1}) - \mathrm{Chi}(x^{-1}) + \mathsf{const.})] - 쌍곡 코사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \cosh(x^{-1}) \,\mathrm{d}x = x \cosh(x^{-1}) - \mathrm{Shi}(x^{-1}) + \mathsf{const.})] - 쌍곡 사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \sinh x^2\,\mathrm{d}x = \frac{\sqrt{\pi}}{4}(\mathrm{erfi}(x) - \mathrm{erf}(x)) + \mathsf{const.})] - 오차함수, 복소오차함수를 사용해야 한다.
  • [math(\displaystyle \int \cosh x^2 \, \mathrm{d}x = \frac{\sqrt{\pi}}{4}(\mathrm{erfi}(x) + \mathrm{erf}(x)) + \mathsf{const.})] - 오차함수, 복소오차함수를 사용해야 한다.


3.3. 삼각함수 + 지수함수 합성[편집]


  • [math(\displaystyle \int \sin e^{x} \mathrm{d}x = \mathrm{Si}(e^x) + \mathsf{const.})] - 사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int \cos e^{x} \mathrm{d}x = \mathrm{Ci}(e^x) + \mathsf{const.})] - 코사인 적분 함수를 사용해야 한다.
  • [math(\displaystyle \int e^{\sin x} \mathrm{d}x)] - 대응하는 적분식 자체가 없다.
  • [math(\displaystyle \int e^{\cos x} \mathrm{d}x)] - 대응하는 적분식 자체가 없다.
  • [math(\displaystyle \int e^x \tan x \, \mathrm{d}x = ie^x {}_2 F_1 (-\frac{i}{2}, 1; 1 -\frac{i}{2}; -e^{2ix}) - \frac{2+i}{5} e^{(1+2i)x} {}_2 F_1(1, 1 -\frac{i}{2}; 2 -\frac{i}{2}; -e^{2ix}) + \mathsf{const.})] - 초기하함수를 사용해야 한다.
  • [math(\displaystyle \int e^x \csc x \, \mathrm{d}x = -(1 + i) e^{(1 + i) x} {}_2F_1(\frac{1-i}{2}, 1; \frac{3 - i}{2}; e^{2 i x}) + \mathsf{const.})] - 초기하함수를 사용해야 한다.
  • [math(\displaystyle \int e^x \sec x \, \mathrm{d}x = (1 - i) e^{(1 + i) x} {}_2F_1(\frac{1-i}{2}, 1; \frac{3 - i}{2}; -e^{2 i x}) + \mathsf{const.})] - 초기하함수를 사용해야 한다.
  • [math(\displaystyle \int e^x \cot x \, \mathrm{d}x = -ie^x {}_2 F_1 (-\frac{i}{2}, 1; 1 -\frac{i}{2}; e^{2ix}) - \frac{2+i}{5} e^{(1+2i)x} {}_2 F_1(1, 1 -\frac{i}{2}; 2 -\frac{i}{2}; e^{2ix}) + \mathsf{const.})] - 초기하함수를 사용해야 한다.

물론 위에 적분식이 없다고 언급된 두 함수는 직접 대응시키는 적분식은 없지만, 테일러 급수 전개를 통해서 무한급수의 형태로 만드는 것은 가능하다.


4. 특수함수의 경우[편집]


수준이 올라가면 쌍곡선 적분 함수람베르트 W 함수, 브링 근호특수함수를 적분하거나 특수함수와의 곱으로 이루어진 함수를 적분하는 일도 나오는데, 초등함수의 적분 또는 미분방정식의 해로 정의된 특수함수의 경우 로그함수/역삼각함수보다 더 미분우선이 된다. 즉 특수함수(Special functions)까지 고려하면 SLIATE 또는 SILATE가 된다.

단, 아래 둘은 예외적으로 적분우선이다. 함부로 미분했다간 계산을 망치기 딱 좋기 때문이다.[9]


파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는
문서의 r167 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}}에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r167 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)
문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-01 04:49:02에 나무위키 부분적분/LIATE 법칙 문서에서 가져왔습니다.

[1] 특히 로그함수가 역수 꼴로 들어오면 매우 난해해진다. ([math(\displaystyle \int \frac{1}{\ln x} {\rm d}x = \mathrm{li}(x) + \mathsf{const.})])[2] 쌍곡선 함수는 지수함수의 일종이다.[3] [math(\cosh x = \dfrac{1}{2} (e^x+e^{-x}), \sinh x = \dfrac{1}{2} (e^x-e^{-x}))][4] 다만, 대수적 함수와 다항함수는 완전히 같지 않다. 왜냐하면 다항함수 외에도 분수함수무리함수도 모두 대수적 함수이기 때문이다. 다만 적분 연산에서는 xr(r은 실수)꼴로 표현되는 모든 함수인 대수적 함수를 다항함수와 동치라고 퉁치기도 한다. r=-1일 경우 패턴이 달라지긴 하지만.[5] 오히려 특수함수를 알고 있으면 그대로 LIATE 법칙을 써도 무방하다.[6] 파르스발 정리(Parseval's theorem)를 이용하여 [math(\dfrac {\sin^4x}{x^4})] 등을 적분하라는 문제가 나올 수 있다.[7] [math(\displaystyle S(x)= \int_{0}^{x} \sin {\pi t^2 \over 2} \, \mathrm{d}t)]라 정의한 경우 [math(\displaystyle \sqrt{\pi \over 2} \, S \left(\sqrt{\pi \over 2}x \right) + \mathsf{const.})]가 된다.[8] 마찬가지로 [math(\displaystyle C(x)=\int_{0}^{x} \cos {\pi t^2 \over 2}\, \mathrm{d}t)]라 정의한 경우 [math(\displaystyle \sqrt{\pi \over 2} \, C \left(\sqrt{\pi \over 2}x \right) + \mathsf{const.})]가 된다.[9] 참고로 저 둘의 적분은 쉽다(각각 [math(|x|+ \mathsf{const.}, \dfrac{x+|x|}{2}+ \mathsf{const.})]).