중력파 (r20220720판)

문서 조회수 확인중...


파일:다른 뜻 아이콘.svg
은(는) 여기로 연결됩니다.
유체역학의 중력파에 대한 내용은 중력파(유체) 문서
중력파(유체)번 문단을
중력파(유체)# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
참고하십시오.








천문학
Astronomy

[ 펼치기 · 접기 ]
배경
기본 정보
우주 · 천체
천문사
고천문학 · 천동설 · 지동설 · 첨성대 · 혼천의 · 간의 · 아스트롤라베 · 올베르스의 역설 · 대논쟁 · 정적 우주론 · 정상우주론
학술적 정보
천문학과 · 천문학자 · 우주덕 · 천문법 · 국제천문연맹 · 한국천문학회 · 한국우주과학회 · 한국아마추어천문학회(천문지도사) · 한국천문연구원 · 한국항공우주연구원 · 한국과학우주청소년단 · 국제천문올림피아드 · 국제 천문 및 천체물리 올림피아드 · 아시아-태평양 천문올림피아드 · 한국천문올림피아드 · 전국학생천체관측대회 · 전국청소년천체관측대회
위치천문학
구면천문학
천구 좌표계 · 구면삼각형 · 천구적도 · 자오선 · 남중 고도 · 북극성 · 주극성 · 24절기(춘분 · 하지 · 추분 · 동지) · 극야 · 백야 · 박명
시간 체계
태양일 · 항성일 · 회합 주기 · 태양 중심 율리우스일 · 시간대 · 시차 · 균시차 · 역법
측성학
연주운동 · 거리의 사다리(연주시차 · 천문단위 · 광년 · 파섹)
천체물리학
천체역학
궤도 · 근일점 · 원일점 · 자전(자전 주기) · 공전(공전 주기) · 중력(무중력) · 질량중심 · 이체 문제(케플러의 법칙 · 활력방정식 · 탈출 속도) · 삼체문제(라그랑주점 · 리사주 궤도 · 헤일로 궤도 · 힐 권) · 중력섭동(궤도 공명 · 세차운동 · 장동#천체역학 · 칭동) · 기조력(조석 · 평형조석론 · 균형조석론 · 동주기 자전 · 로슈 한계) · 비리얼 정리
궤도역학
치올코프스키 로켓 방정식 · 정지궤도 · 호만전이궤도 · 스윙바이 · 오베르트 효과
전자기파
흑체복사 · 제동복사 · 싱크로트론복사 · 스펙트럼 · 산란 · 도플러 효과(적색편이 · 상대론적 도플러 효과) · 선폭 증가 · 제이만 효과 · 편광 · 21cm 중성수소선 · H-α 선
우주론
기본 개념
허블-르메트르 법칙 · 우주 상수 · 빅뱅 우주론 · 인플레이션 우주론 · 표준 우주 모형 · 우주원리 · 암흑물질 · 암흑에너지 · 디지털 물리학 · 평행우주 · 다중우주 · 오메가 포인트 이론 · 모의실험 가설 · 홀로그램 우주론
우주의 역사
우주 달력 · 우주배경복사(악의 축) · 재이온화
기타 개념
핵합성(핵융합) · 중력파 · 중력 렌즈 효과 · 레인-엠든 방정식 · 엠든-찬드라세카르 방정식
천체관측
관측기기 및 시설
천문대 · 플라네타리움 · 망원경(쌍안경 · 전파 망원경 · 간섭계 · 공중 망원경 · 우주 망원경) · CCD(냉각 CCD) · 육분의
관측 대상
별자리(황도 12궁 · 3원 28수 · 계절별 별자리) · 성도 · 알파성 · 딥 스카이(메시에 천체 목록 · NGC · 콜드웰 목록) · 스타호핑법 · 엄폐 · 동시천문현상 · 빛공해
틀:태양계천문학·행성과학 · 틀:항성 및 은하천문학 · 천문학 관련 정보


1. 개요
2. 검출
2.1. 최초의 검출 시도
2.2. 간접 증거의 발견
2.3. 간섭을 이용한 측정 장치의 이용
2.4. 검출 성공(GW150914)
2.5. 중력파 검출이 힘들었던 이유
3. 중력자와의 관계
4. 응용분야
5. 이후 관측기록
5.1. 중성자별 충돌(GW170817)
6. 기타
7. 관련 문서



1. 개요[편집]


/ gravitational wave

우주에서 중력파가 발생하는 모습을 설명한 영상 캡쳐: # 검출 원리

시공간이 출렁인 것이 파동의 형태로 전달되어, 움직이는 물체 또는 계(界, system)로부터 바깥 쪽으로 이동하는 것을 말한다. 이러한 중력파에 의해 전달되는 에너지를 중력 복사(重力輻射, gravitational radiation)라 한다. 일반상대성이론에 따라 일그러진 시공간을 바탕으로 찾아낸 결과이기 때문에 절대시간과 절대공간을 가정하는 뉴턴 역학에서는 중력파의 존재 자체가 불가능하다.

중력파를 방출하는 계의 대표적인 예는 한쪽에 백색 왜성, 또는 중성자별이나 블랙홀을 포함한 쌍성계이다.

1905년에 앙리 푸앵카레가 처음으로 중력파 개념을 제안하였고, 1915년알베르트 아인슈타인일반 상대성 이론의 기반으로 그 존재를 처음으로 예측하였다. 하지만 분명하게 관측하기엔 그 정도가 너무 미약하기 때문에 당시의 기술적 한계로 아인슈타인의 예언 이후 100년 동안 중력파는 직접적으로 검출되지 않고 간접적으로 확인되기만 했었다. 그러다 2015년 9월 14일, LIGO에서 중력파의 검출에 성공하며, 2016년 2월 11일 학계에 그 존재를 보고하며 입증해 내었다. 그리고 이 프로젝트에 참여한 물리학자 3명은 그에 대한 공로로 2017년 노벨 물리학상을 수상하였다. 그 3명 중에는 영화 인터스텔라 제작에 자문한 것으로 유명한 천체물리학자 킵 손 교수도 포함되어 있다.

자세한 역사는 아래의 내용 참조.


2. 검출[편집]


중력파의 검출은 알베르트 아인슈타인일반 상대성 이론으로 그 존재를 예측 했을 때부터 물리학자들 사이에서 하나의 목표가 되었다. 시공간은 일반 상대성 이론에 따르면 질량을 가지는 물체에 의해서 생성되는 중력에 의해서 휘어져 있게 된다. 그런데, 우주 공간에서 아주 큰 질량을 가진 물체가 폭발이나 충돌했을 때처럼 급격하게 질량이 변화하면 당연히 그에 따른 중력도 변화하기 때문에 알베르트 아인슈타인은 이 과정에서 중력의 변화에 의한 시공간의 일렁임이 중력파라는 파동으로 퍼져나갈 것이라고 예측한 것이다.


2.1. 최초의 검출 시도[편집]


중력파 검출 시도는 미국 해군 장교였던 조셉 웨버(Joseph Weber)가 냉각 장치를 사용하지 않고 길이 2미터, 지름 1미터의 알루미늄 원통으로 웨버 바(Weber bar)라고 불리는 장치를 만들어 중력파와의 공명 현상을 이용하여 검출하려 했던 것이 최초이다. 1955년~1956년 안식년을 이용하여 중력파 검출에 대한 시도를 하였고, 1960년대에 웨버 바를 개발하여 중력파 검출성공에 대한 내용을 1968년에 발표하였다.

당시 웨버는 웨버 바로 중력파를 측정했다고 논문을 발표하였으나, 많은 학자들에 의해 재현에 실패하였고 또한 1972년 아폴로 17호에 장치를 실어보내 달 위에서도 관측을 시도하였으나 실패하였다. 웨버의 결과는 알루미늄 원자의 열운동에 의한 노이즈라는 의견과 웨버의 장치는 중력파를 검출하기에는 민감도가 턱없이 부족하다는 의견이 제시되어 설득력을 잃어갔고, 그 후 웨버가 사용했던 소프트웨어에 문제점이 발견되어 결국 학계에 받아들여지지 않았다.

검출은 실패로 끝났지만 전혀 의미가 없었던 것은 아니다. 웨버의 시도는 그 당시 많은 학자들에게 영감을 주었다고 한다. 좀더 정확히 말하면, 많은 학자들이 웨버의 논문이 틀렸음을 주장하려다보니 자연스럽게 학계의 관심이 쏠리고, 이 덕분에 아이디어도 샘솟았다고 한다. 최초로 뛰어든 사람 중 한명이 스티븐 호킹이다. 호킹의 일생 유일한 중력파 논문이 1971년 나왔는데, 웨버의 주장을 이론적으로 계산하여 웨버의 주장이 틀렸음을 보인 논문이다. 지금의 중력파 검출 장치에 대한 아이디어도 그 당시 학생들에게 중력파에 대해 설명해주기 위해 웨버의 논문을 읽은 라이너 와이즈(LIGO를 제안한 3명 중 한 명)가 알루미늄 원통이 도저히 중력파와 공명할 수 있다고는 생각되지 않아 다른 아이디어를 생각해 본 것이 계기가 되었다고 한다. 동료평가의 중요성은 이런 곳에서 나타난다.

웨버의 시도로 인해서 당연히 불가능하다고 생각하여 시도조차 하지 않았던 중력파 검출에 대한 인식이, 가능할 수도 있다는 것으로 바뀐 것이다. 그리고, LIGO에서 중력파 검출이 성공하며 그 의의를 인정받게 된 것이다.

2.2. 간접 증거의 발견[편집]


1970년대에 조세프 테일러와 러셀 헐스가 서로의 주변을 도는 중성자별 쌍을 발견하고, 이것의 궤도를 20-30년간 관측한 결과 해마다 궤도주기가 조금씩 줄어들며 그 반경 또한 그에 따라 줄어들고 있음을 발견하였다. 이 중성자별 쌍은 서로의 질량 중심을 돌며 서서히 가속되어 서로에게 다가가게 되는데 이 과정에서 에너지를 방출하며 중력파가 발생하게 된다.[1] 이 궤도 주기의 변화는 일반 상대성 이론으로 예측할 수 있는 중력파에 의한 에너지 손실에 의한 것과 정확히 일치하여 중력파의 존재를 간접적으로 입증했다. 이들은 "새로운 타입의 펄사 발견과 중력 연구의 새로운 가능성을 연 공로"로 1993년 노벨물리학상을 받았다.


2.3. 간섭을 이용한 측정 장치의 이용[편집]


연구자들은 웨버의 중력파 검출 실패 이후, 중력파 측정 장치의 방식을 레이저 간섭계를 이용한 방식으로 바꿨다. 측정 장치의 원리는 마이컬슨 간섭계와 동일한데, 본래 완전히 결맞음 상태의 레이저를 세팅해 놓았다가 공간의 요동으로 인해 레이저가 진행하는 거리가 아주 조금 달라지면 그에 따라 간섭무늬의 변화가 생기게 하는 방식이다. 이러한 방식을 사용하여 연구자들은 원자핵의 지름 정도의 아주 작은 흔들림도 측정할 수 있게 되었다.

파일:external/92589032475ea1005c640b85c97e311ada59134f1d07d23eb81ae883fddf4643.jpg

2002년에는 LIGO(Laser Interferometer Gravitational-Wave Observatory, 레이저 간섭계를 이용한 중력파 관측 장치)가 작동을 시작하였고, 2005년 11월에는 GEO 600이, 2007년 5월에는 VIRGO가 건설되었다. 2020년에는 KAGRA가 건설되었다.


2.4. 검출 성공(GW150914)[편집]




(4분 03초부터)

"Ladies and gentlemen. We have detected gravitational waves. We did it."

"신사 숙녀 여러분, 우리가 중력파를 검출해 냈습니다. 우리가 해냈습니다."[2]

— 데이비드 라이츠(David Reitze), 고급 레이저 간섭계 중력파 관측소(LIGO) 실험 책임자


"It's like how X-ray changed medicine."

"X-ray의 발견이 의학 분야를 어떻게 변화시켰는지 생각해 보세요."

ㅡ 사볼 마카(Szabolcs Marka), LIGO 연구 참여 컬럼비아 대학교 교수


"Albert Einstein was right again."

"또 한 번 알베르트 아인슈타인이 옳았습니다."

— 데이비드 뮈어(David Muir), ABC WORLD NEWS TONIGHT 진행자


미국 국립과학재단(NSF)은 한국 시각 2016년 2월 12일 오전 12시 30분, 워싱턴 DC 내셔널프레스클럽에서 기자회견을 열어 한국과 미국, 독일, 일본 등 16개국 80여 개 연구기관 1,000여 명의 연구진이 참여한 '고급 레이저 간섭계 중력파 관측소(LIGO) 과학 협력단'이 중력파 검출에 성공했다고 밝혔다.

같은 시각 유럽 연합(EU)의 중력파 검출 연구단인 '버고(VIRGO)'도 이탈리아 마체라타에 위치한 버고 관찰소에서 이 같은 내용을 발표했다.[3]

연구진에 따르면 이번에 관측한 중력파는 지구로부터 13억 광년 떨어진 곳에서 쌍성계를 이루고 있던 두 개의 블랙홀이 충돌해 새로운 블랙홀이 되는 과정에서 생성된 것이다. 블랙홀의 질량은 각각 태양의 36배, 29배이며, 하나로 결합하여 태양보다 62배 무거운 블랙홀이 됐다. 이때 태양 3개분의 질량이 에너지로 전환되면서 발생한 중력파[4]가 빛의 속도로 지구를 스쳐 지나갔는데, 이 순간을 LIGO가 놓치지 않고 잡아낸 것이다. 연구팀은 "5.1시그마[5]보다 정밀한 수준의 검출"이었다고 설명했다. 뉴스 기사 보통 5시그마 정도를 인정의 기준으로 생각한다.

또 첫 신호를 검출하는 동안(2016년 1월경에 검출 종료)에 세 개의 다른 신호를 더 검출하였다고 한다.

이번 두 번째 중력파는 각각 태양 질량의 14배와 8배인 두 블랙홀이 합병해 빠르게 회전하는 21배의 태양 질량의 블랙홀이 만들어지는 과정에서 발생한 것으로 루이지애나 주립대학 물리학과 가브리엘라 곤잘레즈 교수는 "블랙홀의 질량이 최초 중력파를 낸 것보다 가벼워서 검출기의 민감한 주파수 대역에서 더 오랜 시간인 1초 정도 머물렀다"며 "우주에 얼마나 다양한 블랙홀이 존재하는지 조사를 시작할 수 있게 된 것"이라고 평가했다. 더 큰 질량의 블랙홀 충돌이었던 1차 검출에서는 중력파 신호가 불과 0.25초 동안만 지속됐다.

#[6]

질량이 큰 두 천체(블랙홀, 중성자별 등)가 있고 어쩌다보니 서로에 대해 공전을 하게 된 상황이라고 생각해 보자.[7] 서로에게 중력을 행사하고 두 천체의 질량중심(그림의 빨간 십자가)를 중심으로 공전을 하게 된다. 고전역학적 이체문제에서는 서로를 공전하는 두 물체의 궤도는 영원히 바꾸지 않아야 하지만, 실제로는 두 천체의 가속 운동에서 나오는 중력파의 물결이 주변 퍼져 나가고 있기 때문에 총 에너지는 차츰 줄어들어 두 천체의 궤도는 점점 가까워지가 결국 합병이 이루어지게 된다.

파일:gw.png

위 그림의 맨 윗 줄인 공이 회전하는 모습은 두 천체(논문에서는 두 블랙홀)가 서로 가까워지다가 합쳐지는 과정을 그림으로 나타낸 장면이다. 거리가 가까워지면서 공전 반지름이 작아지고 각운동량의 보존을 위해서 속도는 점점 빨라진다. 그러다가 두 천체가 매우 가까이 있을 때에는 매우 빠른 속도로 공전을 하게 된다. 그러다가 두 천체가 하나로 합쳐지고, 합쳐진 천체는 더 큰 질량의 하나의 천체가 된다.

두 번째 줄은 서로에 대해 공전하는 천체 때문에 생겨나는 중력파로 인한 공간 변형을 나타내는 그래프이다. 세로 축은 변형률이다. 두 천체가 서로에 대해 공전을 함에 따라 중력파가 생겨 공간이 출렁이기 시작하고[8] 그 출렁임의 강도는 두 천체가 얼마나 가까이 있는지, 얼마나 빠르게 움직이는지에 따라 변화한다. 두 천체가 가까이 접근함에 따라 공전시간이 줄어들게 되고 중력파의 주파수는 점점 커진다.[9] 그러다가 두 천체가 합쳐지게 되면 더 이상 중력파는 생성되지 않는다.[10]

세 번째 줄은 두 천체의 움직임을 나타낸 그래프이다. 검은 색은 블랙홀 사이의 거리, 녹색은 블랙홀의 상대속도를 나타낸다. 두 블랙홀이 시간이 지남에 따라 점점 가까워지고 빨라지는 것을 알 수 있는데 이는 위에서 설명한 내용과 일치한다. 그러다가 하나의 천체로 합쳐진 이후에는 상대 속도나 거리가 없으므로 그래프가 더 이상 존재하지 않는다.

파일:external/upload.wikimedia.org/LIGO_measurement_of_gravitational_waves.png
측정방법은 간단히 말해서 마이컬슨 간섭계를 무지막지하게 크게 만들어, 중력파가 간섭계에 영향을 끼칠 경우 나타나는 레이저의 미세한 변화를 서로 다른 장소에서 측정하는 방식으로 이루어졌다.

서로 다른 두 장소의 검출기에서 2015년 9월 14일에 검출된 GW150914. 이론적으로 예상되는 값과 비교한 사진이다.

이 프로젝트에 참여한 오정근 교수가 2016년 6월 22일 서울의 한 학교에서 강의한 내용에 따르면, 이 중력파를 검출한 사건은 매우 극적이었다. 사실 LIGO는 시설이 완공되고 나서 대대적인 업그레이드 작업이 있었다. 그런데 미국이 이를 혼자 하려니 힘들어서 전 세계랑 손잡고 라이고의 업그레이드를 실시했는데(이를 Advanced LIGO라고 한다) 업그레이드와 조립을 마치고 작동을 시작한 뒤 30분만에 검출된 것이었다.

해당 중력파는 지금으로부터 약 13~14억 년 전에 두 블랙홀이 충돌하면서 생성되었는데[11] 이때 발생한 중력파가 지구를 통과하기 약 30분 전쯤, 대략 목성궤도를 통과할 쯤에 LIGO가 가동된 것이다. 사실 14억 년이라는 천문학적인 시간에 비하면 30분은 '찰나'라는 표현조차도 너무 길다고 느껴질 정도의 시간이니[12][13], 그야말로 극적인 발견이었다.

또 같은 해 12월 26일에도 검출에 성공했는데(GW151226) 이 발견에 얽힌 사연은 더 가관인 것이... 원래는 수일 전에 실험을 멈추기로 예정되어 있었는데 그곳 사람들이 "야 어차피 곧 크리스마스고 휴일엔 할 일도 없는데 그냥 계속 작동시켜 놔보자!" 그래서 가동을 시켜놨는데 정말 또 검출됐다.


2.5. 중력파 검출이 힘들었던 이유[편집]


모형으로써 설명하자면 아래 그림과 같다.
파일:중력파와 전자기파.png

전자기파는 시험전하를 이용하여 전기력을 측정함으로써 알아낼 수 있다. 그리고 혹시 검출되는 힘이 미약하다 싶으면 시험전하의 전하량을 늘려서 전기력을 더 키워서 손쉽게 해결할 수 있다. 꼭 관측자 기준 좌표계가 아니더라도, 전하량이 서로 다른 두 시험전하 사이의 거리의 변화를 이용하여 검출할 수 있다.

허나 중력파는 이야기가 달라진다. 먼저 '중력'은 시공간 자체의 구부러짐으로 설명된다. 이는 다시 말하자면 중력파는 시공간 자체의 기하학적 요동이며, 관측자도 중력파를 따라 같이 흔들린다. 결국 관측자 자신은 중력파를 느낄 수 없다. 더욱이 중력파로 인한 가속운동은 중력파가 동일할 때 물체의 질량에 관계없이 모두 똑같이 나타난다. 이 때문에 위 그림에서 짙은 회색이나 옅은 회색이나 다 똑같이 요동친다. 관측자 기준 변위를 측정하든 두 물체 사이의 거리 변화로 측정하든 간에 위치·거리 변화의 상쇄로 인해 측정 난이도가 극한에 다다른다.

해결책은 바로 위치에 따른 중력파의 차이를 검출하는 것이다. 기조력은 위치별로 중력이 달라져서 발생하는 힘이다. 중력파의 차이도 마찬가지. 충분히 긴 막대 모양의 측정장치를 준비하여 막대 양 끝의 기조력을 감지하거나 혹은 두 시험장치의 거리를 충분히 멀리 떨어뜨려 둘 사이의 거리 변화를 감지한다. 비용상으로는 후자의 방식이 효율적이다. 앞서 소개한 LIGO도 거울 사이의 거리가 4km에 이른다.[14] 요약하자면 위치에 따른 중력파의 위상차를 측정이 가능할 정도로 확보하는 것이 해결책의 요지이다. (실제의 LIGO검출기는 레이저를 90도각도로 이루어진 최대한 자유롭게 공간에 걸어놓은 두 거울에 각각 비춰 반사되는 레이저를 하나로 합치게 하여 간섭현상을 일으키는데 만약, 중력파로 기조력이 바뀌어 각 거울에서 나오는 빛의 이동거리가 바뀐다면(거울과 거울의 거리의 이야기가 아니다.) 하나로 모은 간섭무늬에 변화가 생기고(명암) 그것을 검출하는 것이다. 빛의 거리가 바뀐다는 건 빛의 속도가 바뀌는 것과 같은 이야기이다 라고 하는 모순을 생각할 수 있다. 이는 빛의 군속도가 아닌 위상속도가 바뀌면서 간섭무늬에 영향을 주는 것에 비롯되기 때문이다. (이해를 돕자면 빛의 속도로 움직이면서 손전등으로 어떤 정지해있는 물체를 비춘다고 가정했을 때 그 물체에 생기는 그림자의 이동속도를 생각하는 것이다. 어떤 물체와의 거리를 1미터 앞에서는 광속으로 움직이는 손전등을, 반대쪽으로 물체와의 거리를 2미터 되는 곳에 벽을 설치하여 그림자를 생기게 한다면 손전등이 움직이는 거리의 두 배를 그림자는 같은 속도로 움직였다는 것이고, 이것이 위상속도이며 빛의 속도보다 충분히 빠를 수 있다는 것이다.)

여기서 끝이 아니다. 레이저 간섭을 이용하여 검출하는 LIGO에서 중력파가 아니더라도 빛의 간섭을 흔드는 요인이 얼마든지 있다. 사실 중력파는 까마득히 멀리 떨어진 천체에서 퍼져나와 그중 일부가 지구 전역으로 도달하는 양상이기 때문에, 지구 어디서 측정하나 거의 동시에 거의 같은 흔들림이 관측되어야 한다. 그래서 미국 내에서도 루이지애나 주와 워싱턴 주에 각각 배치한 것. 두 관측소 사이의 거리는 약 3천km 정도이다. (관측소를 3천 키로로 거리를 둔 이유는 중력파의 방향을 알기위함이다. 거의 같은 중력파가 A와 B를 통과할 때 생가는 시간의 오차를 계산해 어느 방향에서 왔는가를 계산한다. 이때, 상당한 노이즈 대책이 필요한데, 대표적인 것이 진공관과 낮은 온도이다. 실제로 온도 노이즈를 줄이기 위해서 반사경으로 사파이어를 사용한다.

더 정확한 중력파 관측을 위해서는 관측소와 반사경 사이의 거리를 더 멀리 떨어 뜨려 놔야 하는데, 지표면에서는 그 긴 거리에서 '진공과 극저온'을 유지하는 것이 어렵다. 그래서 나온 방안이 중력파 관측 위성을 우주에 쏘아 올리는 것이다. LISA 계획은 3대의 중력파 관측 위성을 쏘아 올려, 관측소와 거울 사이의 거리를 250km 까지 확보하는 것을 목표로 하고 있다.

3. 중력자와의 관계[편집]


힘은 매개입자를 주고 받으면서 상호작용을 한다. 전자기력은 광자를, 약력은 W-Z보손을, 강력은 글루온 같은 입자를 주고받는다. 우주에 존재하는 네 가지의 힘 전자기력, 약력, 강력, 중력 중에서 중력만 상호작용 입자의 존재 여부를 밝혀내지 못했다. 중력의 상호작용 입자가 있다고 가정한다면, 학계에서는 그 입자를 중력자라고 지칭하고 있다.

중력자가 아직까지 발견되지 않은 이유는, 중력장의 범위가 대단히 넓기 때문이다. 또한 중력은 약한 힘이기 때문에 상호작용 입자가 존재한다 해도 그 미미한 힘을 검출하기가 쉽지 않다. 이 와중에 중력파가 발견되었고, 중력파가 중력자의 역할을 할 것이라는 의견이 제시되었다. 하지만 학자들 사이에서는, 중력파는 중력자가 아니라는 예측이 지배적이다. 사실 중력자에 대한 연구도 중력파에 대한 연구도 너무 부족한 실정이라서 이쪽은 계속 연구를 해봐야 알 수 있다.

다음은 중력파가 중력자의 역할을 하지 않을 것이라고 예측되는 근거들이다.

먼저 중력파는 다른 물체와 거의 상호작용을 하지 않는다는 것이다. 중력파의 발견 과정에서 얼마나 정밀한 민감도를 가진 장비가 필요했는지를 상기해보자. 발견조차 이렇게 어려웠으니 인간이 감지할 수 있을 만큼의 상호작용은 생각하기 힘들다. 하지만 우리 주변의 모든 사물들은 분명히 중력의 영향을 받고 있으며 인간 역시 중력을 감지할 수 있다. 중력파가 중력자의 역할을 한다면, 충분히 감지할 수 있는 상호작용을 해야 하지 않을까.

그리고 중력파는 단순히 진동현상에 가깝기 때문에 중력의 매개체로 보기 어렵다는 것이다. 중력파는 어떤 물체가 질량을 잃으면서 발생한 에너지가 공간을 진동시킨 것이며, 침대에 볼링공을 떨어뜨릴 때 침대 표면이 진동하는 것을 떠올리면 이해하기 쉽다. 볼링공의 낙하에너지가 침대 표면의 진동이라는 형태로 나타났다고 해서 그것이 에너지 전달의 매개체라고 보기엔 힘들다. 다른 장소에서는 다른 형태가 될 수도 있었는데 침대 위였기 때문에 침대 표면의 진동이라는 형태로 나타났을 뿐이다.

쌍성자 별이 아령의 형태를 이루며 돌아가는 것은 두 별의 사이에서만 중력파가 발생하고 그 파동의 진폭이 정확히 쌍성자별의 위치까지만 닿기 때문에(두 쌍성자별은 중력파의 마루에 위치한다는 것) 그렇다는 해석도 있다. 하지만 중력파의 진폭이 그럴 만큼 충분히 크지 않으며, 중력파가 쌍성자 별의 회전 형태에 영향을 미칠 정도의 상호작용을 할지 의문이다.

이와 같이 중력파가 중력자라고 하기엔 부족함이 많다.

하지만, 중력파가 중력자의 역할을 한다고 설명할 수 있는 이론이 있다. 바로 여분 차원인데, 여분 차원에서는 미시 세계에서 중력의 힘과 그 영향력이 판이하게 다르기 때문에, 중력파가 상호작용을 거의 하지 않는다는 특징을 뒤집을 수 있다. 실제 관측 결과를 가지고 여분 차원을 적용해서 설명한 연구 결과도 있다.

대신 어디까지나 미시 세계에서의 이야기이므로 거시 세계를 미시 세계로 간주하여 적용해야만 한다. 1km 길이의 막대를 충분히 멀리서 바라보면 0.1mm 길이의 막대로 볼 수 있는 것처럼, 어떤 먼 거리를 그보다 충분히 먼 거리에서 관측하는 것으로 간주하고 미시 세계의 이론을 적용해야 할 것이다. 어째 속임수 같다플랑크 길이는 변하지 않는데?


4. 응용분야[편집]


몸을 열어보지 않고도 몸 속을 관찰할 할 수 있는 X선의 발견에 비유되곤 한다. 기존에는 빛과 전자기파를 통해 우주를 '보았'으나 중력파를 사용하면 우주를 '들을' 수 있다[15]. 전자파 관측은 직진성 때문에 방향까지 특정하기 쉽지만 중력파는 전방위 확장성 때문에 3차원적 방향을 특정하기 위해서는 최소한 네 점의 독립된 관측지점이 있어야 한다. 대신 역으로 생각하면 어느 방향에서 날아오든 중력파를 캐치할 수 있다는 것이 특징.

물질과 거의 간섭하지 않는 중력파의 특성을 응용하여 거대 항성의 내부 구조나 심지어 블랙홀조차 내부를 간접적으로 관찰할 수 있을 것으로 기대되고 있다. 초신성 폭발 시에는 중력파가 반드시 발생하므로 이를 관측할 수도 있다. 또한 빅뱅 직후에 발생한 중력파의 여진을 탐지해낼 가능성도 있다.[16] 빅뱅 직후의 우주를 관측하고 연구하기 위한 도구가 하나 더 생긴 셈.

이론물리학 연구에 점재적으로 응용될 수 있는 분야를 구체적으로 거론해보자면,
  • 상대성 이론의 확실한 검증과 이론의 한계 연구[17]
  • 빅뱅 직후의 우주 탐구
  • 블랙홀에 대한 직접적인 관측
  • 초신성 폭발 직전과 직후의 이미지를 찍을 수 있고 심지어는 매우 많은 프레임으로 사진촬영하여 동영상으로 만들 수도 있을 것이다.[18]
  • 중성자별의 내부 구성 및 극한 환경에서의 물질 현상 간접 분석[19] 등이다. 몇 개 안 되어 보이지만 매우 굵직굵직한 연구분야들이라 어마어마한 연구적용이 가능하다.

중력파의 도달 범위 역시 굉장히 넓어서 응용 가능성이 높다. 이번에 중력파를 검출해낸 쌍블랙홀의 경우 지구로부터 13억 광년 떨어져 있었다. 앞으로 더 강한 탐지기를 개발하여 더 멀리, 더 정확하게 관측이 가능할 것이다. 특히 이번 발견 덕분에 아인슈타인 망원경(간섭계 관측소 프로젝트 이름)의 업그레이드 계획이 탄력을 받을 전망이다.

심지어 유럽 우주국(ESA)은 직접 우주에 중력파 관측기를 발사할 예정이다. eLISA(Evolved Laser Interferometer Space Antenna, 진보형 레이저 간섭계 우주 안테나) 프로젝트라고 부르며, 지구 궤도를 따라 태양을 공전하는 세 개의 관측기를 발사해 정삼각형 모양으로 배치하는 것이다. 이 정삼각형의 각 변은 100만 킬로미터이며,[20] 극도로 미세한 중력파까지도 탐지하게 된다. 발사계획연도는 2034년.[21]

또한 통신 분야에서도 응용할 수 있다. 전자기파 통신이 어려운 곳에 중력파 통신을 적용하면 된다. 물질과 상호작용을 거의 하지 않는 중력파는 뭐든지 투과해버리기 때문에 장소에 구애받지 않는 꿈의 통신기술이 될 것이다. [22]과학동아 1986년 08월호, 제3의 통신 중력파, 전파통신의 불가능을 해결한다.

하지만 공간이동이나 중력파 통신 같은 기술은 아직 SF영화에나 나올 법한 기술이다. 중력을 이용할 수 있을 정도가 되려면 그 특성에 대한 연구가 충분히 진행되어 중력의 작용을 예측할 수 있어야 하는데, 현재 학계에서는 중력의 전달매개체인 중력자가 존재하는지에 대해서조차 의견이 분분하다.[23] 중력파의 발견에 힘입어 관련 연구가 많이 진행되길 기대해보자.

지진이 발생할 때 발생하는 중력파 신호로 지진을 기존의 방법보다 더 빨리 탐지할 수 있을지도 모른다고 한다.#


5. 이후 관측기록[편집]



5.1. 중성자별 충돌(GW170817)[편집]


2017년 8월 17일 LIGO에서 새로운 중력파가 관측되었으며, 약 1.7초 후 페르미 감마선 관측 망원경에서 짧은 감마선 폭발이 감지되었다. 그러나 이탈리아에서 새롭게 가동을 시작한 VIRGO 관측기는 LIGO에 비해 더욱 더 정밀한 성능을 지녔음에도 불구하고 중력파를 검출하지 못하였다. 이를 통해 중력파가 VIRGO의 사각지대로 들어왔기 때문임을 알 수 있었다. 이 정보들을 토대로 관측 기기들의 측정가능 지역과 감마선이 감지된 영역을 고려하여 과학자들은 이 대상 중력파원이 있을 만한 후보 영역을 설정했다.

이번에 발견된 중력파는 이전의 관측 결과와는 다르게 매우 긴 지속시간(약 100초)을 가지고 있었으며, 이로부터 이번 신호는 중성자별의 충돌로서 발생했을 것이라는 추측이 이루어졌다. 단순히 중력파만 발생하고 끝나는 블랙홀 충돌과는 달리 중성자별의 충돌 현상은 반드시 '킬로노바'라 불리는 광학적 현상을 동반한다고 알려져 있기 때문에 대상의 정확한 위치를 알 수 없는 상황에서 최적의 관측 시기가 지나가버릴 가능성이 있었다. 이에 LIGO 및 페르미 망원경의 과학자들은 전 세계의 천문대에 협조 요청을 보냈고, 가능한 모든 망원경을 총동원하여 중력파원을 찾기 위한 유례 없는 국제적인 공조 작전이 이루어졌다.

파일:GW170817.png

그리고 약 11시간 후 마침내 은하 NGC4993에서 밝은 빛이 나오는 것을 광학 망원경 관측을 통해 직접적으로 확인 할 수 있었다. 두 개의 중성자성이 충돌하여 에너지를 내뿜는 과정인 킬로노바는 현재까지 이론적으로만 존재하던 현상으로, 최초 관측에 중력파가 큰 기여를 한 셈이 되었다. 이로써 인류는 같은 현상을 중력파와 전자기파로 관측한 최초의 기록을 남기게 되었다. 뿐만 아니라 스펙트럼 분석결과 금, 납 등 매우 무거운 원소가 확인됨에 따라 이러한 킬로노바가 우주에 있는 무거운 원소를 만드는 메커니즘 중 하나라는 것이 확인 되었다.


6. 기타[편집]


  • 인용된 논문의 첫 번째와 두 번째에 아인슈타인 이름이 들어가있다.

  • 총 14명의 국내기관 소속 연구자들이 이 연구에 참여하여 공동저자로 등록되어 있다. 참여한 국내 기관으로는 서울대, 연세대[24], 한양대, 부산대, 국가수리과학연구소, 한국과학기술정보연구원이 있다. 한국인 연구자들로 확장하면 국내 연구자들 외에도 해외연구기관소속인 한국인 연구자들도 참여하고 있어 그 수는 더 많을 것으로 보인다.

  • 중력파 연구에 참여한 국내 연구진의 인터뷰1, 국내 연구진의 인터뷰2를 보면 중력파연구가 국내에서 얼마나 소외된 분야인지 알 수 있다. 척박한 환경에도 불구하고 중력파에 관심있는 국내과학자들 20여 명이 자발적으로 한국중력파연구협력단(KGWG)을 만들고 20여 명의 인력만으로 2009년부터 LIGO프로젝트에 참여하였다. 대형프로젝트로 전 세계에서 1000여 명이 참여하고 있다지만 참여가 그리 간단한 것이 아니다. 한국 연구진도 관련연구원 500여 명 앞에서 계획을 발표하고 동의를 얻은 후에야 참여가 가능했다고 한다. 대한민국은 중력파 발견에 한국에서도 중력파 검출기의 독자적인 모델을 제안했다고 한다. 소그로(SOGRO)라 불리는 검출기로 라이고가 탐지하지 못하는 영역의 중력파원을 목표로 하는 차세대 검출기라고... IBS에 제안서를 냈는데 안 됐다고 했다. "더 이상 고려하지 않겠단 편지"만 보냈다고 한다. 해당기사
다만 2019년에 다시 제안서를 낸다고 한다.https://www.google.com/amp/s/www.donga.com/news/amp/all/20190201/93958479/1

  • 당장 곧바로 영향이 갈 곳은 수능 물리이다. 시사적 이슈에 민감한 수능 출제 기조를 볼 때 올해 모의고사 혹은 2017학년도 수능 물리1의 상대성이론관련 문제가 이를 다룰 가능성이 높아졌다. 그러나 교과서에서는 직접적으로 발견되지 않았다고 서술되어 있으니 '직접적으로 발견되었는지'를 묻지는 않을 것이다. 혹은 국어영역 지문으로 나올 수도 있다. 하지만 수능 물리1, 국어영역 지문 모두 등장하지 않았다.

  • 2017 연세대 논술 물리에서 라이고가 그대로 나왔다. 1번 문항은 쌍성계를 이루어 운동하던 두 천체가 하나로 합쳐져 질량결손이 일어났을 때 발산하는 총 에너지를 구하는 문제였으며, 3번 문항에서 라이고의 두 거울이 진동할 때 광 검출기에서 나타나는 신호의 파형을 물었다.

  • 중력파 발견 보도 과정에서 연합뉴스가 병크를 저지르기도 했다. 엠바고를 멋대로 깨고 세계 최초로 이를 보도해 버린 것. 많은 항의가 뒤따랐고, 연합뉴스는 전문 취소했다. 해당 기사

  • 살아 생전에 발견하지 못할 거라 생각하던 사람이 많았던지라 뉴스를 보고 혼란에 빠진 사람이 많았다.


7. 관련 문서[편집]



파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2022-07-11 17:31:08에 나무위키 중력파 문서에서 가져왔습니다.

[1] 이해가 어렵다면 닐스 보어의 원자모형을 깔 때 쓰이는 논리를 적용해 보면 쉽다. 그래도 어려우면 아래 그림을 보라. 원자핵을 중심으로 전자가 돌고 있다면 전자는 끊임없이 가속한다.(방향이 바뀌는 것도 가속이다) 문제는 전자는 가속운동을 하게 되면 에너지(즉 빛. 이걸 써먹는 게 포항가속기연구소다)를 방출하게 되는데 방출한 에너지만큼 전자의 운동에너지는 감소하여 점차 핵으로 빨려들어가는 불안정한 모델이 된다. 다시 중성자별 쌍에 적용하면, 두 중성자가 돌고있는 주기 및 반경이 줄어든다는 것은 무언가에 의해 운동에너지를 잃고 있다는 것이다. 보어모델과 비교하면 이게 중력에 의한 파동이라는 걸 직관적으로 이해가능하다. 파일:external/blogfiles2.naver.net/%BC%F6%BC%D2%BF%F8%C0%DA_%B8%F0%C7%FC_miraeedu21.jpg[2] 이런 말을 하는 것도 당연하다. 아인슈타인이 일반 상대성 이론으로 주장한 것을 정확히 100년 만에 발견했으니. 편집본 공식 방송. 현재는 스트리밍된 버전을 볼 수 있다.[3] 그러나 버고 간섭계는 LIGO의 검출 당일에 업그레이드 작업에 들어가 있었으므로 결과적으로 중력파를 검출하진 못했다.[4] 이때 방출된 에너지의 양은 관측 가능한 우주에 있는 모든 별이 방출하는 에너지의 합의 10배, 또는 킵 손의 말에 의하면 50배 이상에 해당하는 3.6×1049 W (36 뒤에 0이 48개 붙은 값이다). 가장 밝은 초신성이 태양의 방출 에너지(3.846×1026 W)의 5700억 배에 해당하는 에너지를 방출하고, 가장 밝은 은하가 태양 350조 개와 맞먹는 에너지를 방출한다는 것을 감안하면 엄청나게 크다. 중요한 것은, 관측에 따르면 이러한 밀집성 간의 병합이 우주에서 매우 희귀한 편이긴 하지만 앞서 말한 것들보다 드문 것이 아니다. 또 이만큼의 엄청난 에너지가 방출되었음에도 불구하고 중력파가 이제서야 직접적으로 검출되었다는 것은 그만큼 중력파 검출이 어려웠음을 알 수 있다. 이게 LIGO의 재공사 이후 가동 1년도 안 돼서 검출되긴 했지만...[5] 중력파로 인한 현상이 아닌 우연의 일치일 확률이 약 590만분의 1이라는 뜻이다. 또는 신뢰수준 99.99994%.[6] 영문 위키피디아[7] 사실 두 천체가, 그것도 질량이 태양의 수십 배에 달하는 거대한 블랙홀 2체가 병합할 정도로 가깝게 공전을 하게 된 사연이 무엇인지도 흥미로운 주제 중 하나다. 과거 쌍성계였던 두 초거성이 진화하여 이중 블랙홀로 재탄생했을 가능성이 가장 높지만, 항성으로부터 진화했다고 보기에는 두 블랙홀의 질량이 상당히 큰 편이다.[8] 출렁인다는 것은 공간 자체가 출렁인다는 의미이다. 공간이 출렁임에 따라서 공간의 어떤 축으로는 늘어나고 다른 축으로는 줄어들 수 있다. 그 늘어나고 줄어드는 것을 변형율이라고 한다.[9] 그래프가 점점 조밀해지는 것을 볼 수 있다. 이를 중력파의 주파수가 커졌다고 표현했다.[10] 서로에 대한 공전으로 인해 생기는 중력파는 더이상 생겨나지 않는다는 의미이다.[11] 이때 지구는 공룡도 없었던, 이제 막 생명이 태동할 때인 선캄브리아대였다![12] 비유를 들자면, 빛이 '1m'를 이동하는 데 걸리는 시간을 생각해보면 된다. 그만큼 짧았던 시간이었다.[13] 사실 이것도 중력파 검출에 비하면 대략 8만배나 큰 비율이다. (1 / 24,544,275,840,000)[14] 이는 마이컬슨-몰리 실험 장치의 거울 간 거리의 수백 배에 이른다. 거기에 거울로 레이저가 계속 반사되게 해 실질적인 길이는 400km에 이른다![15] 실제 중력파를 음파로 변환하여 들어보면 물방울 떨어지는 소리 내지는 고무마개 딸 때 나는 "뽕"하는 소리 비슷하게 들린다. 임팩트 있게 다가오는 시각적인 모습과 다르게 음파로 듣는 중력파는 아기자기하다는 반응이 많다.[16] 빅뱅 직후에 발생한 중력파는, 비록 아주 미세하겠지만, 아직도 우주 공간을 누비고 있을 것이다.[17] 현대물리학의 두 축인 일반 상대성 이론과 양자역학은 특히 중력과 시공간이라는 측면에 있어 두 이론 자체만으로 서로 양립할 수 없다. 따라서 적어도 둘 중 하나는, 그리고 아마도 둘 다, 잘못된 이론은 절대 아니지만 자체적으로 완전한 이론은 아니라는 것이 물리학자들의 중론이다. 궁극적으로는 모든 것의 이론을 정립하는 데 도움이 될지도 모른다.[18] 현재 초신성의 관측방법은 폭발 직후 나오는 빛과 전자기파를 탐지하고 그 방향으로 망원경을 돌려 관측하는 형태가 대부분 이었다. 때문에 이미 초신성 폭발을 뒤늦게 알 수 밖에 없는 뒷북관측이었는데 반해 중력파를 이용할 경우 폭발 몇시간 전에 중력파의 요동을 탐지하고 폭발 하기 몇분 전에 나오는 중성미자를 탐지하여 초신성 폭발이 일어나는 현장을 생생히 관측할 수 있을 것이다.[19] 중력파 관측기의 감도가 향상된다면 중성자별 간의 충돌로 인해 발생하는 중력파도 감지할 수 있을 것이며, 실제로도 2017년 8월 17일 관측에 성공했다. 블랙홀 충돌의 경우 블랙홀은 오직 질량으로만 그 특성이 결정지어지기에 충돌로 인한 중력파에는 블랙홀의 질량에 대한 정보만이 포함되지만, 중성자별의 경우 구성 입자의 특성이 아인슈타인의 중력파 방정식에 의거하여 중력파에 영향을 미치게 된다. 따라서 중성자별 충돌로 인한 중력파는 중성자별을 이루는 물질 상태에 대한 자세한 정보를 포함하고 있을 것이며, 이에 대한 분석을 통해 극한 중력의 환경에서 물질이 어떻게 행동하는가를 연구할 수 있다. 블랙홀 충돌의 경우에는 안타깝게도 질량에 대한 정보 이외에 물질 관련 모든 정보는 사건의 지평선 안에 갇혀있기 때문에 중력파에 반영되지 못한다.[20] 지구 둘레의 25배이자 지구와 달의 평균거리를 2.5배 넘는다. 예산문제로 NASA가 빠지기 전의 원래 계획에서는 500만 킬로미터였다.[21] NASA가 함께 진행했던 LISA 프로젝트의 소개 영상. 탐지기끼리 레이저를 쏘면 빛이 도착하는 데만 16초가 걸린다. 지금은 유럽우주국 단독의 eLISA 프로젝트가 되었다. 그리고 탐지기 간 거리가 확 줄었다[22] 그러나 일상생활에서 이용 가능한 수준의 통신 시스템을 구축하기 위해서는 목성보다 무거운 항성끼리의 충돌을 제어할 수 있는 기술이 필요하기 때문에, 현재의 공학기술의 수준에서는 불가능한 얘기라고 볼 수 있고, 또한 중력파 통신보다 가격이 저렴하고 전 지구를 대상으로 운용가능한 스타링크와 같은 통신시스템이 구축되고 있기 때문에, 개발 및 연구의 필요성도 낮다고 볼 수 있다.[23] 중력자가 있다고 가정하더라도, 중력자의 특성 연구를 위해 필요한 장비 규모가 엄청나다. 이론상 목성급 질량을 가진 탐지기가 필요하며, 중성자별급의 에너지를 가지고 공전시켜야 10년에 한 번 오차범위 내 탐지가 가능하다.[24] 한명이 있으나 논문상으로는 한국과학기술정보원 소속으로 표기되어있다.